Molecular Biology Reports

, Volume 39, Issue 1, pp 701–707 | Cite as

Cloning and characterization of β-catenin gene in early embryonic developmental stage of Artemia sinica

  • Xiang Li
  • Lin Hou
  • Jian Ma
  • Yudong Liu
  • Luping Zheng
  • Xiangyang Zou


β-Catenin plays a crucial role in embryonic development and responds to the activation of several signal transduction pathways. In this paper, in order to understand the functions of β-catenin gene in early embryonic development of Artemia sinica, the complete cDNA sequence was cloned for the first time using RACE technology, then the sequence was analyzed by some bioinformatic methods. The expression of the β-catenin gene was investigated at various stages during the embryonic development using quantitative real-time PCR and immunohistochemistry assay. Through the investigation, the result of real-time PCR illustrated that β-catenin gene might relate to the response of A. sinica’s immune system and osmotic pressure system in early embryonic developmental stage. Meanwhile, Immunohistochemistry assay demonstrated that during embryonic development, β-catenin was mainly expressed in the cephalothorax. Besides, we discovered that β-catenin might not be a maternal gene in A. sinica, and this new phenomenon may explain a constitutive and regional expression during the early embryonic development of A. sinica.


Artemia sinica β-catenin Embryonic development Function 



Lymphoid enhancer factor


T-cell factor


Glycogen synthase kinase-3β


LDL-receptor-related protein






Adenomatous polyposis coli




Relative expression software tool



We thank Dr. He Chongbo, Liaoning Ocean and Fisheries Science Research Institute, for his help in carrying out real-time PCR experiment. This work was supported by National Science Foundation of China (30271035, 31071876).


  1. 1.
    Jiang LJ, Hou L, Zou HL, Zhang XY, Wang RF, Sun JQ, Zhao WJ, An JL (2007) Cloning and expression analysis of p26 gene in Artemia sinica. Acta Biochem Biophys Sin 39(5):351–358CrossRefGoogle Scholar
  2. 2.
    Imai K, Takada N, Satoh N, Satou Y (2000) β-Catenin mediates the specification of endoderm cells in ascidian embryos. Development 127:3009–3020PubMedGoogle Scholar
  3. 3.
    Yasui K, Li G, Wang Y, Saiga H, Zhang P, Aizawa S (2002) β-Catenin in early development of the lancelet embryo indicates specific determination of embryonic polarity. Dev Growth Differ 44(6):467–475PubMedCrossRefGoogle Scholar
  4. 4.
    Pillai MC, Vines CA, Wikramanayake AH, Cherr GN (2003) Polycyclic aromatic hydrocarbons disrupt axial development in sea urchin embryos through a β-catenin dependent pathway. Toxicology 186:93–108PubMedCrossRefGoogle Scholar
  5. 5.
    Range RC, Venuti JM, McClay DR (2005) LvGroucho and nuclear β-catenin functionally compete for Tcf binding to influence activation of the endomesoderm gene regulatory network in the sea urchin embryo. Dev Biol 279:252–267PubMedCrossRefGoogle Scholar
  6. 6.
    Schneider S, Steinbeisser H, Warga RM, Hausen P (1996) β-Catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos. Mech Dev 57:191–198PubMedCrossRefGoogle Scholar
  7. 7.
    Vleminckx K, Kemler R, Hecht A (1999) The C-terminal transactivation domain of β-catenin is necessary and sufficient or signaling by the LEF-1/β-catenin complex in Xenopus laevis. Mech Dev 81:65–74PubMedCrossRefGoogle Scholar
  8. 8.
    Moon RT, Miller JR (1996) Signal transduction through β-catenin and specification of cell fate during embryogenesis. Gene Dev 10:2527–2539PubMedCrossRefGoogle Scholar
  9. 9.
    Fu XY, Sun HX, Klein WH, Mu XQ (2006) β-Catenin is essential for lamination but not neurogenesis in mouse retinal development. Dev Biol 299:424–437PubMedCrossRefGoogle Scholar
  10. 10.
    Roobol K, Möller W (1981) Protein synthesis in Artemia salina. Eucaryotic elongation factor eEF-Ts is a transphosphorylase. Mol Biol Rep 7(4):197–202PubMedCrossRefGoogle Scholar
  11. 11.
    Nagafuchi A, Takeichi M (1989) Transmembrane control of cadherin-mediated cell adhesion: a 94 kDa protein functionally associated with a specific region of the cytoplasmic domain of E-cadherin. Cell Regul 1:37–44PubMedGoogle Scholar
  12. 12.
    Ozawa M, Baribault H, Kemler R (1989) The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species. EMBO J 8:1711–1717PubMedGoogle Scholar
  13. 13.
    Aberle H, Butz S, Stappert J, Weissig H, Kemler R, Hoschuetzky H (1994) Assembly of the cadherin-catenin complex in vitro with recombinant proteins. J Cell Sci 107:3655–3663PubMedGoogle Scholar
  14. 14.
    Yang Y, Yang J, Liu R, Li H, Luo X, Yang G (2010) Accumulation of β-catenin by lithium chloride in porcine myoblast cultures accelerates cell differentiation. Mol Biol Rep 38:2043–2049PubMedCrossRefGoogle Scholar
  15. 15.
    Moreno MP, Jamora C, Fuchs E (2003) Sticky business: orchestrating cellular signals at adherens junctions orchestrating cellular signals at adherens junctions. Cell 112:535–548CrossRefGoogle Scholar
  16. 16.
    Chen G, Jiang Q, You Z, Yao J, Mou L, Lin X, Shen X, You T, Lin Q, Wen J, Lin L (2010) Regulation of GSK-3 beta in the proliferation and apoptosis of human thyrocytes investigated using a GSK-3 beta-targeting RNAi adenovirus expression vector: involvement the Wnt/β-catenin pathway. Mol Biol Rep 37:2773–2779PubMedCrossRefGoogle Scholar
  17. 17.
    Li Q, Liu X, Zhang M, Ye G, Qiao Q, Ling Y, Wu Y, Zhang Y, Yu L (2010) Characterization of a novel human CDK5 splicing variant that inhibits Wnt/β-catenin signaling. Mol Biol Rep 37(5):2415–2421PubMedCrossRefGoogle Scholar
  18. 18.
    Gottardi CJ, Gumbiner BM (2004) Distinct molecular forms of β-catenin are targeted to adhesive or transcriptional complexes. J Cell Biol 167:339–349PubMedCrossRefGoogle Scholar
  19. 19.
    Peifer M, Polakis P (2000) Wnt signaling in oncogenesis and embryogenesis—a look outside the nucleus. Science 287(5458):1606–1609PubMedCrossRefGoogle Scholar
  20. 20.
    Wang XP, O’Connell DJ, Lund JJ, Saadi I, Kuraguchi M, Turbe-Doan A, Cavallesco R, Kim H, Park PJ, Harada H, Kucherlapati R, Maas RL (2009) Apc inhibition of Wnt signaling regulates supernumerary tooth formation during embryogenesis and throughout adulthood. Development 136(11):1939–1949PubMedCrossRefGoogle Scholar
  21. 21.
    Yan D, Wiesmann M, Rohan M, Chan V, Jefferson AB, Guo L, Sakamoto D, Caothien RH, Fuller JH, Reinhard C, Garcia PD, Randazzo FM, Escobedo J, Fantl WJ, Williams LT (2001) Elevated expression of axin2 and hnkd mRNA provides evidence that Wnt/β-catenin signaling is activated in human colon tumors. Cell Biol 98:14973–14978Google Scholar
  22. 22.
    Cong F, Schweizer L, Chamorro M, Varmus H (2003) Requirement for a nuclear function of requirement for a nuclear function of β-catenin in Wnt signaling-catenin in Wnt signaling. Mol Cell Biol 23:8462–8470PubMedCrossRefGoogle Scholar
  23. 23.
    Vandesompele J, Preter KD, Pattyn F, Poppe B, Roy NV, Paepe AD, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genorme Biol 3(7): RESEARCH0034Google Scholar
  24. 24.
    Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30(9):e36PubMedCrossRefGoogle Scholar
  25. 25.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45PubMedCrossRefGoogle Scholar
  26. 26.
    Ronshaugen M, McGinnis N, McGinnis W (2002) Hox protein mutation and macroevolution of the insect body plan. Nature 415:914–917. doi: 10.1038/nature716 PubMedCrossRefGoogle Scholar
  27. 27.
    Kanwar AS (2007) Brine shrimp (Artemia salina)—a marine animal for simple and rapid biological assays. J Chin Clin Med 2:236–240Google Scholar
  28. 28.
    Hsia CC, Paré AC, Hannon M, Ronshaugen M, McGinnis W (2010) Silencing of an abdominal Hox gene during early development is correlated with limb development in a crustacean trunk. Evol Dev 12(2):131–143. doi: 10.1111/j.1525-142X.2010.00399.x PubMedCrossRefGoogle Scholar
  29. 29.
    Patel HN (1994) Imaging drosophila embryos and larvae antibody probes.
  30. 30.
    Milde P, Merke J, Ritz E, Haussler MR, Rauterberg EW (1989) Immunohistochemical detection of 1,25-dihydroxyvitamin D3 receptors and estrogen receptors by monoclonal antibodies: comparison of four immunoperoxidase methods. J Histochem Cytochem 37(11):1609–1617PubMedCrossRefGoogle Scholar
  31. 31.
    Giorno R (1984) A comparison of two immunoperoxidase staining methods based on the avidin-biotin interaction. Diagn Immunol 2(3):161–166PubMedGoogle Scholar
  32. 32.
    Shi ZR, Itzkowitz SH, Kim YS (1988) A comparison of three immunoperoxidase techniques for antigen detection in colorectal carcinoma tissues. J Histochem Cytochem 36:317–322PubMedCrossRefGoogle Scholar
  33. 33.
    Blenis J (1993) Signal transduction via the MAP kinases: proceed at your own RSK. Proc Natl Acad Sci USA 90:5889–5892PubMedCrossRefGoogle Scholar
  34. 34.
    June CH, Fletcher MC, Ledbetter JA, Schieven GL, Siegel JN, Philips AF, Samelson LE (1990) Inhibition of tyrosine phosphoorylation prevents T-cell receptor-mediated signal transduction. Proc Natl Acad Sci USA 87:7722–7726PubMedCrossRefGoogle Scholar
  35. 35.
    Larabell CA, Torres M, Rowning BA, Yost C, Miller JR, Wu M, Kimelman D, Moon RT (1997) Establishment of the dorso-ventral axis in Xenopus embryos is presaged by early asymmetries in β-catenin that are modulated by the Wnt signaling pathway. J Cell Biol 136:1123–1136PubMedCrossRefGoogle Scholar
  36. 36.
    Peleari FA, Maischein HM (1998) Function of zebrafish β-catenin and TCF-3 in dorsoventral patterning. Mech Dev 77:63–74CrossRefGoogle Scholar
  37. 37.
    Church VL, Francis-West P (2002) Wnt signaling during limb development. Int J Dev Biol 46:927–936PubMedGoogle Scholar
  38. 38.
    Sadot E, Geiger B, Oren M, Ben-Ze’ev A (2001) Down-regulation of β-catenin by activated p53. Mol Cell Biol 21:6768–6781PubMedCrossRefGoogle Scholar
  39. 39.
    Lickert H, Domon C, Huls G, Wehrle C, Duluc I, Clevers H, Meyer BI, Freund JN, Kemler R (2000) Wnt/β-catenin signaling regulates the expression of the homeobox gene Cdx1 in embryonic intestine. Development 127:3805–3813PubMedGoogle Scholar
  40. 40.
    Willert K, Nusse R (1998) β-catenin: a key mediator of Wnt signaling. Curr Opin Genet Dev 8:95–102PubMedCrossRefGoogle Scholar
  41. 41.
    Clevers H (2006) Wnt/β-catenin signaling in development and disease. Cell 127:469–480PubMedCrossRefGoogle Scholar
  42. 42.
    Hingwing K, Lee S, Nykilchuk L, Wasston T, Hardin J, Hawkins N (2009) CWN-1 functions with DSH-2 to regulate C elegans asymmetric neuroblast division in a β-catenin independent Wnt pathway. Dev Biol 15:45–56Google Scholar
  43. 43.
    Agius E, Oelgeschlager M, Wessely O, Kemp C, De Robertis EM (2000) Endodermal nodal-related signals and mesoderm induction in xenopus. Development 127:1173–1183PubMedGoogle Scholar
  44. 44.
    Birsoy B, Kofron M, Schaible K, Wylie C, Heasman J (2006) Vg1 is an essential signaling molecule in xenopus development. Development 133:15–20PubMedCrossRefGoogle Scholar
  45. 45.
    Pai LM, Kirpatrick C, Blanton J, Oda H, Takeichi M, Peifer M (1996) Drosophila α-catenin and E-cadherin bind to distinct regions of drosophila armadillo. J Biol Chem 271:32411–32420PubMedCrossRefGoogle Scholar
  46. 46.
    Liu H-Y, Pan L-Q, Zheng D (2008) Effects of salinity on biogenic amines, hemolymph osmotic pressure, and activity of Gill’s Na+/K+-ATPase in Charybdis japonica (Crustacea, Decapoda). J World Aquacult Soc 39(6):812–820. doi: 10.1111/j.1749-7345.2008.00218.x CrossRefGoogle Scholar
  47. 47.
    Elmadfa I, Klein P, Meyer AL (2010) Immune-stimulating effects of lactic acid bacteria in vivo and in vitro. Proc Nutr Soc 69(3):416–420PubMedCrossRefGoogle Scholar
  48. 48.
    Farkas A, Szatmári E, Orbók A, Wilhelm I, Wejksza K, Nagyoszi P, Hutamekalin P, Bauer H, Bauer HC, Traweger A, Krizbai IA (2005) Hyperosmotic mannitol induces Src kinase-dependent phosphorylation of beta-catenin in cerebral endothelial cells. J Neurosci Res 80(6):855–861PubMedCrossRefGoogle Scholar
  49. 49.
    Sokabe T, Fukumi-Tominaga T, Yonemura S, Mizuno A, Tominaga M (2010) The TRPV4 channel contributes to intercellular junction formation in keratinocytes. J Biol Chem. doi: 10.1074/jbc.M110.103606
  50. 50.
    Warr E, Das S, Dong Y, Dimopoulos G (2008) The Gram-negative bacteria-binding protein gene family: Its role in the innate immune system of Anopheles gambiae and in anti-Plasmodium defence. Insect Mol Biol 17(1):39–51. doi: 10.1111/j.1365-2583.2008.00778.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Xiang Li
    • 1
  • Lin Hou
    • 1
  • Jian Ma
    • 1
  • Yudong Liu
    • 1
  • Luping Zheng
    • 1
  • Xiangyang Zou
    • 2
  1. 1.College of Life SciencesLiaoning Normal UniversityDalianChina
  2. 2.Department of BiologyDalian Medical UniversityDalianChina

Personalised recommendations