Skip to main content
Log in

The cyclophosphamide metabolite, acrolein, induces cytoskeletal changes and oxidative stress in Sertoli cells

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The aim of this study is to explore the mechanism by which acrolein (ACR), a metabolite of cyclophosphamide (CP), induces immature Sertoli cell cytoskeletal changes. Sertoli cells obtained from rats were cultivated and treated with 50 and 100 μM ACR. XTT assays were performed to detect cell viability. Activities of superoxide dismutase (SOD), glutathione peroxidases (GSH-Px), and catalase (CAT), as well as total anti-oxidation competence (T-AOC) were examined. Superoxide anion levels were detected by a fluorescent probe. Cell ultrastructure changes were observed by transmission fluorescent microscope. Actin filament (F-actin) distribution was detected by immunofluorescence, and ERK and p38MAPK expression were detected by western blot analysis. ACR significantly decreased the viability of Sertoli cells in a dose- and time-dependent manner. T-AOC and the antioxidant activity of SOD, CAT and GSH-Px, were decreased in ACR-treated groups compared with the control group. The levels of reactive oxygen species (ROS) in ACR-treated Sertoli cells were increased. In addition, characteristics of cell apoptosis such as mitochondrial swelling, aggregated chromatin, condensed cytoplasm, nuclei splitting, and nuclei vacuolization were observed in ACR-treated cells. Furthermore, ACR-treatment also induced microfilament aggregation, marginalization and regionalization. The expression levels of ERK and p38MAPK were also increased in ACR-treated cells in a dose- and time-dependent manner. ACR, a major CP metabolite, impairs the cytoskeleton which is likely caused by induction of the oxidative stress response through up-regulation of ERK and p38MAPK expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tripathi DN, Jena GB (2008) Astaxanthin inhibits cytotoxic and genotoxic effects of cyclophosphamide in mice germ cells. Toxicology 248:96–103

    Article  PubMed  CAS  Google Scholar 

  2. Charak BS, Gupta R, Mandrekar P et al (1990) Testicular dysfunction after cyclophosphamide-vincristine-procarbazine-prednisolone chemotherapy for advanced Hodgkin’s disease: a long-term follow-up study. Cancer 65:1903–1906

    Article  PubMed  CAS  Google Scholar 

  3. Kenney LB, Laufer MR, Grant FD et al (2001) High risk of infertility and long term gonadal damage in males treated with high dose cyclophosphamide for sarcoma during childhood. Cancer 91:613–621

    Article  PubMed  CAS  Google Scholar 

  4. Trasler JM, Hales BF, Robaire B et al (1986) Chronic low dose cyclophosphamide treatment of adult male rats: effect on fertility, pregnancy outcome and progeny. Biol Reprod 34:275–283

    Article  PubMed  CAS  Google Scholar 

  5. Hoorweg-Nijman JJ, Delemarrevande-Wall HA, De Wall FC et al (1992) Cyclophosphamide-induced disturbance of gonadotropin secretion manifesting testicular damage. Acta Endocrinol 126:143–148

    PubMed  CAS  Google Scholar 

  6. Das UB, Mallick M, Debnath JM et al (2002) Protective effect of ascorbic acid on cyclophosphamide-induced testicular gametogenic and androgenic disorders in male rats. Asian J Androl 4:201–207

    PubMed  CAS  Google Scholar 

  7. Ghosh D, Das UB, Ghosh S et al (2002) Testicular gametogenic and steroidogenic activities in cyclophosphamide treated rat: a correlative study with testicular oxidative stress. Drug Chem Toxicol 25:281–292

    Article  PubMed  CAS  Google Scholar 

  8. Manda K, Bhatia AL (2003) Prophylactic action of melatonin against cyclophosphamide-induced oxidative stress in mice. Cell Biol Toxicol 19:367–372

    Article  PubMed  CAS  Google Scholar 

  9. Agarwal A, Saleh RA, Bedaiwy MA (2003) Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril 79:829–843

    Article  PubMed  Google Scholar 

  10. Griveau JF, Le Lannou D (1997) Reactive oxygen species and human spermatozoa: physiology and pathology. Int J Androl 20:61–69

    Article  PubMed  CAS  Google Scholar 

  11. Conte G, Milardi D, De Marinis L et al (1999) Reactive oxygen species in male infertility: review of literature and personal observations. Panminerva Med 41:45–53

    PubMed  CAS  Google Scholar 

  12. Iuchi Y, Kaneko T, Matsuki S et al (2004) Carbonyl stress and detoxification ability in the male genital tract and testis of rats. Histochem Cell Biol 121:123–130

    Article  PubMed  CAS  Google Scholar 

  13. Maiorino M, Ursini F (2002) Oxidative stress, spermatogenesis and fertility. Biol Chem 383:591–597

    Article  PubMed  CAS  Google Scholar 

  14. Show MD, Anway MD, Folmer JS et al (2003) Reduced intratesticular testosterone concentration alters the polymerization state of the Sertoli cell intermediate filament cytoskeleton by degradation of Vimentin. Endocrinology 144:5530–5536

    Article  PubMed  CAS  Google Scholar 

  15. Tindall DJ, Rowley DR, Murthy L et al (1985) Structure and biochemistry of the Sertoli cell. Int Rev Cytol 94:127–149

    Article  PubMed  CAS  Google Scholar 

  16. Vogl AW, Vaid KS, Guttman JA (2009) The Sertoli cell cytoskeleton. Adv Exp Med Biol 636:186–211

    Article  Google Scholar 

  17. Monsees TK, Franz M, Gebhardt S et al (2000) Sertoli cells as a target for reproductive hazards. Andrologia 32:239–246

    Article  PubMed  CAS  Google Scholar 

  18. de Jonge ME, Huitema AD, Rodenhuis S et al (2005) Clinical pharmacokinetics of cyclophosphamide. Clin Pharmacokinet 44:1135–1164

    Article  PubMed  Google Scholar 

  19. Kehrer JP, Biswal SS (2000) The molecular effects of acrolein. Toxicol Sci 57:6–15

    Article  PubMed  CAS  Google Scholar 

  20. Adams JD, Klaidman LK (1993) Acrolein-induced oxygen radical formation. Free Radic Biol Med 15:187–193

    Article  PubMed  CAS  Google Scholar 

  21. Mythili Y, Sudharsan PT, Selvakumar E et al (2004) Protective effect of DL-alpha-lipoic acid on cyclophosphamide induced oxidative cardiac injury. Chem Biol Interact 30:13–19

    Article  Google Scholar 

  22. Luo J, Shi Ri (2004) Acrolein induces axolemmal disruption, oxidative stress, and mitochondrial impairment in spinal cord tissue. Neurochem Int 44:475–486

    Article  PubMed  CAS  Google Scholar 

  23. Luo J, Shi R (2004) Acrolein induces oxidative stress in brain mitochondria. Neurochem Int 46:443–452

    Google Scholar 

  24. Arumugam N, Sivakumar V, Thanislass J et al (1997) Effects of acrolein on rat liver antioxidant defense system. Indian J Exp Biol 35:1373–1374

    PubMed  CAS  Google Scholar 

  25. Gurtoo HL, Hipkens JH, Sharma SD (1981) Role of glutathione in the metabolism-dependent toxicity and chemotherapy of cyclophosphamide. Cancer Res 41:3584–3591

    PubMed  CAS  Google Scholar 

  26. Westlind A, Malmebo S, Johansson I et al (2001) Cloning and tissue distribution of a novel human cytochrome p450 of the CYP3A subfamily, CYP3A43. Biochem Biophys Res Commun 281:1349–1355

    Article  PubMed  CAS  Google Scholar 

  27. Clifton RJ, O’Donnell L, Robertson DM et al (2002) Pachytene spermatocytes in co-culture inhibit rat Sertoli cell synthesis of inhibin beta B-subunit and inhibin B but not the inhibin alpha-subunit. J Endocrinol 172:565–574

    Article  PubMed  CAS  Google Scholar 

  28. Galdieri M, Zani B (1981) Hormonal induced changes in Sertoli cell glycoproteins. Cell Biol Int Rep 5:111

    Article  PubMed  CAS  Google Scholar 

  29. Li LS, Li XL, Wei GH et al (2007) The oxidative stress impairment of immature Sertoli cells by acrolein. Chin J Pediatr Surg 28:318–321 (in Chinese)

    CAS  Google Scholar 

  30. Halliwell B, Gutteridge JMC (1998) Free radicals in biology and medicine, 3rd edn. Oxford Science, Oxford

    Google Scholar 

  31. Aitken J, Fisher H (1994) Reactive oxygen species generation and human spermatozoa: the balance of benefit and risk. Bioessays 16:259–267

    Article  PubMed  CAS  Google Scholar 

  32. Bauche F, Fouchard MH, Jegou B (1994) Antioxidant system in rat testicular cells. FEBS Lett 349:392–396

    Article  PubMed  CAS  Google Scholar 

  33. Tramer F, Rocco F, Micali F et al (1998) Antioxidant systems in rat epididymal spermatozoa. Biol Reprod 59:753–758

    Article  PubMed  CAS  Google Scholar 

  34. Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128

    Article  PubMed  CAS  Google Scholar 

  35. Roy J, Pallepati P, Bettaieb A et al (2009) Acrolein induces a cellular stress response and triggers mitochondrial apoptosis in A549 cells. Chem Biol Interact 181:154–167

    Article  PubMed  CAS  Google Scholar 

  36. Angkeow P, Deshpande SS, Qi B et al (2002) Redox factor-1: an extra-nuclear role in the regulation of endothelial oxidative stress and apoptosis. Cell Death Differ 9:717–725

    Article  PubMed  CAS  Google Scholar 

  37. Deshpande SS, Angkeow P, Huang J et al (2000) Racl inhibits TNF-alpha-induced endothelial cell apoptosis: dual regulation by reactive oxygen species. FASB J 14:1705–1714

    Article  CAS  Google Scholar 

  38. Macho A, Hirsch T, Marzo I et al (1997) Glutathione depletion is an early and calcium elevation is a late event of thymocyte apoptosis. J Immunol 158:4612–4619

    PubMed  CAS  Google Scholar 

  39. Guan X, Ruch RJ (1996) Gap junction endocytosis and lysosomal degradation of connexin43-P2 in WB-F344 rat liver epithelial cells treated with DDT and lindane. Carcinogenesis 17:1791–1798

    Article  PubMed  CAS  Google Scholar 

  40. Defamie N, Mograbi B, Roger C et al (2001) Disruption of gap junctional intercellular communication by lindane is associated with aberrant localization of connexin43 and zonula occludens-1 in 42GPA9 Sertoli cells. Carcinogenesis 22:1537–1542

    Article  PubMed  CAS  Google Scholar 

  41. Fiorini C, Tilloy-Ellul A, Chevalier S, Charuel C, Pointis G (2004) Sertoli cell junctional proteins as early targets for different classes of reproductive toxicants. Reprod Toxicol 18(3):413–421

    Article  PubMed  CAS  Google Scholar 

  42. Calingasan NY, Uchida K, Gibson GE (1999) Protein-bound acrolein: a novel marker of oxidative stress in Alzheimer’s disease. J Neurochem 72:751–756

    Article  PubMed  CAS  Google Scholar 

  43. Tirumalai R, Rajesh KT, Mai KH et al (2002) Acrolein causes transcriptional induction of phase II genes by activation of Nrf2 in human lung type II epithelial (A549) cells. Toxicol Lett 132:27–36

    Article  PubMed  CAS  Google Scholar 

  44. Marshall CJ (1995) Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80:179–185

    Article  PubMed  CAS  Google Scholar 

  45. Dalton TP, Shertzer HG, Puga A (1999) Regulation of gene expression by reactive oxygen. Annu Rev Pharmacol Toxicol 39:67–101

    Article  PubMed  CAS  Google Scholar 

  46. Kyriakis JM, Avruch J (1996) Sounding the alarm: protein kinase cascades activated by stress and inflammation. J Biol Chem 271:24313–24316

    Article  PubMed  CAS  Google Scholar 

  47. Li MW, Mruk DD, Lee WM et al (2009) Disruption of the blood-testis barrier integrity by bisphenol A in vitro: is this a suitable model for studying blood-testis barrier dynamics? Int J Biochem Cell Biol 41:2302–2314

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, F., Li, XL., Lin, T. et al. The cyclophosphamide metabolite, acrolein, induces cytoskeletal changes and oxidative stress in Sertoli cells. Mol Biol Rep 39, 493–500 (2012). https://doi.org/10.1007/s11033-011-0763-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-0763-9

Keywords

Navigation