Skip to main content
Log in

Myotonic dystrophy type 1-associated CTG repeats disturb the expression and subcellular distribution of microtubule-associated proteins MAP1A, MAP2, and MAP6/STOP in PC12 cells

Molecular Biology Reports Aims and scope Submit manuscript

Abstract

To study the effect of DM1-associated CTG repeats on neuronal function, we developed a PC12 cell-based model that constitutively expresses the DMPK gene 3′-untranslated region with 90 CTG repeats (CTG90 cells). As CTG90 cells exhibit impaired neurite outgrowth and as microtubule-associated proteins (MAPs) are crucial for microtubule stability, we analyzed whether MAPs are a target of CTG repeats. NGF induces mRNA expression of Map2, Map1a and Map6 in control cells (PC12 cells transfected with the empty vector), but this induction is abolished for Map2 and Map1a in CTG90 cells. MAP2 and MAP6/STOP proteins decrease in NGF-treated CTG90 cells, whereas MAP1A increases. Data suggest that CTG repeats might alter somehow the expression of MAPs, which appears to be related with CTG90 cell-deficient neurite outgrowth. Decreased MAP2 levels found in the hippocampus of a DM1 mouse model indicates that targeting of MAPs expression by CTG repeats might be relevant to DM1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Reardon W et al (1993) Cataract and myotonic dystrophy: the role of molecular diagnosis. Br J Ophthalmol 77(9):579–583

    Article  PubMed  CAS  Google Scholar 

  2. Harper PS (2001) Myotonic dystrophy. W.B. Saunders, London

    Google Scholar 

  3. Brook JD et al (1992) Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 68(4):799–808

    Article  PubMed  CAS  Google Scholar 

  4. Brook JD, Shaw DJ, Meredith AL (1985) Myotonic dystrophy and gene mapping on human chromosome 19. Biotechnol Genet Eng Rev 3:311–347

    PubMed  CAS  Google Scholar 

  5. Tsilfidis C et al (1992) Correlation between CTG trinucleotide repeat length and frequency of severe congenital myotonic dystrophy. Nat Genet 1(3):192–195

    Article  PubMed  CAS  Google Scholar 

  6. Akiguchi I et al (1999) Brain proton magnetic resonance spectroscopy and brain atrophy in myotonic dystrophy. Arch Neurol 56(3):325–330

    Article  PubMed  CAS  Google Scholar 

  7. Harley HG et al (1993) Size of the unstable CTG repeat sequence in relation to phenotype and parental transmission in myotonic dystrophy. Am J Hum Genet 52(6):1164–1174

    PubMed  CAS  Google Scholar 

  8. Pizzuti A, Friedman DL, Caskey CT (1993) The myotonic dystrophy gene. Arch Neurol 50(11):1173–1179

    PubMed  CAS  Google Scholar 

  9. Harper PS (1975) Congenital myotonic dystrophy in Britain. I. Clinical aspects. Arch Dis Child 50(7):505–513

    Article  PubMed  CAS  Google Scholar 

  10. Jamal GA et al (1986) Myotonic dystrophy. A reassessment by conventional and more recently introduced neurophysiological techniques. Brain 109(Pt 6):1279–1296

    Article  PubMed  Google Scholar 

  11. Bhagavati S, Shafiq SA, Xu W (1999) (CTG)n repeats markedly inhibit differentiation of the C2C12 myoblast cell line: implications for congenital myotonic dystrophy. Biochim Biophys Acta 1453(2):221–229

    PubMed  CAS  Google Scholar 

  12. de Leon MB, Cisneros B (2008) Myotonic dystrophy 1 in the nervous system: from the clinic to molecular mechanisms. J Neurosci Res 86(1):18–26

    Article  PubMed  Google Scholar 

  13. Ebralidze A et al (2004) RNA leaching of transcription factors disrupts transcription in myotonic dystrophy. Science 303(5656):383–387

    Article  PubMed  CAS  Google Scholar 

  14. Ranum LP, Cooper TA (2006) RNA-mediated neuromuscular disorders. Annu Rev Neurosci 29:259–277

    Article  PubMed  CAS  Google Scholar 

  15. Jiang H et al (2004) Myotonic dystrophy type 1 is associated with nuclear foci of mutant RNA, sequestration of muscleblind proteins and deregulated alternative splicing in neurons. Hum Mol Genet 13(24):3079–3088

    Article  PubMed  CAS  Google Scholar 

  16. Quintero-Mora ML et al (2002) Expanded CTG repeats inhibit neuronal differentiation of the PC12 cell line. Biochem Biophys Res Commun 295(2):289–294

    Article  PubMed  CAS  Google Scholar 

  17. Shea TB, Beermann ML (1990) Alterations in dynamics of microtubule assembly during axonal neuritogenesis in NB2a/d1 cells. Cell Biol Int Rep 14(12):1093–1098

    Article  PubMed  CAS  Google Scholar 

  18. Dent EW et al (2007) Filopodia are required for cortical neurite initiation. Nat Cell Biol 9(12):1347–1359

    Article  PubMed  CAS  Google Scholar 

  19. Mitchison T, Kirschner M (1988) Cytoskeletal dynamics and nerve growth. Neuron 1(9):761–772

    Article  PubMed  CAS  Google Scholar 

  20. Brugg B, Matus A (1988) PC12 cells express juvenile microtubule-associated proteins during nerve growth factor-induced neurite outgrowth. J Cell Biol 107(2):643–650

    Article  PubMed  CAS  Google Scholar 

  21. Hernandez-Hernandez O et al (2006) Myotonic dystrophy expanded CUG repeats disturb the expression and phosphorylation of tau in PC12 cells. J Neurosci Res 84(4):841–851

    Article  PubMed  CAS  Google Scholar 

  22. Andrade A et al (2007) Myotonic dystrophy CTG repeat expansion alters Ca2+ channel functional expression in PC12 cells. FEBS Lett 581(23):4430–4438

    Article  PubMed  CAS  Google Scholar 

  23. Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 73(7):2424–2428

    Article  PubMed  CAS  Google Scholar 

  24. Gomes-Pereira M et al (2007) CTG trinucleotide repeat “big jumps”: large expansions, small mice. PLoS Genet 3(4):e52

    Article  PubMed  Google Scholar 

  25. Jancsik V et al (1996) New polyclonal antiserum against microtubule-associated protein 2 (MAP2); preparation and preliminary characterization. Neurobiology (Bp) 4(3):241–245

    CAS  Google Scholar 

  26. Galiano MR et al (2004) Astrocytes and oligodendrocytes express different STOP protein isoforms. J Neurosci Res 78(3):329–337

    Article  PubMed  CAS  Google Scholar 

  27. Arregui CO, Carbonetto S, McKerracher L (1994) Characterization of neural cell adhesion sites: point contacts are the sites of interaction between integrins and the cytoskeleton in PC12 cells. J Neurosci 14(11 Pt 2):6967–6977

    PubMed  CAS  Google Scholar 

  28. Fischer I, Richter-Landsberg C, Safaei R (1991) Regulation of microtubule associated protein 2 (MAP2) expression by nerve growth factor in PC12 cells. Exp Cell Res 194(2):195–201

    Article  PubMed  CAS  Google Scholar 

  29. Guillaud L et al (1998) STOP proteins are responsible for the high degree of microtubule stabilization observed in neuronal cells. J Cell Biol 142(1):167–179

    Article  PubMed  CAS  Google Scholar 

  30. Vogel C et al (2010) Sequence signatures and mRNA concentration can explain two-thirds of protein abundance variation in a human cell line. Mol Syst Biol 6:400

    Article  PubMed  Google Scholar 

  31. Llamusi B, Artero R (2008) Molecular effects of the CTG repeats in mutant dystrophia myotonica protein kinase gene. Curr Genomics 9(8):509–516

    Article  PubMed  CAS  Google Scholar 

  32. Oyamada R et al (2006) Neurofibrillary tangles and deposition of oxidative products in the brain in cases of myotonic dystrophy. Neuropathology 26(2):107–114

    Article  PubMed  Google Scholar 

  33. Sergeant N et al (2001) Dysregulation of human brain microtubule-associated tau mRNA maturation in myotonic dystrophy type 1. Hum Mol Genet 10(19):2143–2155

    Article  PubMed  CAS  Google Scholar 

  34. Seznec H et al (2001) Mice transgenic for the human myotonic dystrophy region with expanded CTG repeats display muscular and brain abnormalities. Hum Mol Genet 10(23):2717–2726

    Article  PubMed  CAS  Google Scholar 

  35. Osborne RJ et al (2009) Transcriptional and post-transcriptional impact of toxic RNA in myotonic dystrophy. Hum Mol Genet 18(8):1471–1481

    Article  PubMed  CAS  Google Scholar 

  36. Fontaine-Lenoir V et al (2006) Microtubule-associated protein 2 (MAP2) is a neurosteroid receptor. Proc Natl Acad Sci USA 103(12):4711–4716

    Article  PubMed  CAS  Google Scholar 

  37. Dehmelt L et al (2003) The role of microtubule-associated protein 2c in the reorganization of microtubules and lamellipodia during neurite initiation. J Neurosci 23(29):9479–9490

    PubMed  CAS  Google Scholar 

  38. Kaech S, Ludin B, Matus A (1996) Cytoskeletal plasticity in cells expressing neuronal microtubule-associated proteins. Neuron 17(6):1189–1199

    Article  PubMed  CAS  Google Scholar 

  39. Esmaeli-Azad B, McCarty JH, Feinstein SC (1994) Sense and antisense transfection analysis of tau function: tau influences net microtubule assembly, neurite outgrowth and neuritic stability. J Cell Sci 107(Pt 4):869–879

    PubMed  CAS  Google Scholar 

  40. Brugg B, Reddy D, Matus A (1993) Attenuation of microtubule-associated protein 1B expression by antisense oligodeoxynucleotides inhibits initiation of neurite outgrowth. Neuroscience 52(3):489–496

    Article  PubMed  CAS  Google Scholar 

  41. Mickey B, Howard J (1995) Rigidity of microtubules is increased by stabilizing agents. J Cell Biol 130(4):909–917

    Article  PubMed  CAS  Google Scholar 

  42. Faller EM, Brown DL (2009) Modulation of microtubule dynamics by the microtubule-associated protein 1a. J Neurosci Res 87(5):1080–1089

    Article  PubMed  CAS  Google Scholar 

  43. Bosc C, Andrieux A, Job D (2003) STOP proteins. Biochemistry 42(42):12125–12132

    Article  PubMed  CAS  Google Scholar 

  44. Sanchez C, Diaz-Nido J, Avila J (2000) Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog Neurobiol 61(2):133–168

    Article  PubMed  CAS  Google Scholar 

  45. Lueck JD et al (2007) Chloride channelopathy in myotonic dystrophy resulting from loss of posttranscriptional regulation for CLCN1. Am J Physiol Cell Physiol 292(4):C1291–C1297

    Article  PubMed  CAS  Google Scholar 

  46. Nakayama A et al (2001) Characterization of two promoters that regulate alternative transcripts in the microtubule-associated protein (MAP) 1A gene. Biochim Biophys Acta 1518(3):260–266

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Muscular Dystrophy Association, Inc. Grant No. MDA-3693. Prisiliana Vélazquez-Bernardino PhD student was supported by CONACyT, control number: 185951. We are in debt with Dr. Christophe Bosc (INSERM, France) and Dr. Manuel Hernández (Cinvestav, México) for providing us with the anti-MAP6/STOP and anti-actin antibodies, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bulmaro Cisneros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velázquez-Bernardino, P., García-Sierra, F., Hernández-Hernández, O. et al. Myotonic dystrophy type 1-associated CTG repeats disturb the expression and subcellular distribution of microtubule-associated proteins MAP1A, MAP2, and MAP6/STOP in PC12 cells. Mol Biol Rep 39, 415–424 (2012). https://doi.org/10.1007/s11033-011-0753-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-0753-y

Keywords

Navigation