Molecular Biology Reports

, Volume 39, Issue 1, pp 209–214 | Cite as

AP-2β enhances p53-mediated transcription of the αB-crystallin gene through stabilizing p53

  • Xiang Hu
  • Lin Wang
  • Wei Sun
  • Ling Xiao
  • Yuan Wu
  • Yiming Zhuo
  • Dongsong Nie
  • Jianlin Zhou
  • Jian Zhang


The αB-crystallin (CRYAB) is a member of the small heat shock protein family that can be induced by various stresses and pathological conditions. Aberrant expression of CRYAB has been shown to be associated with several neurological diseases and malignant neoplasms. To identify transcriptional regulators of CRYAB expression, we examined its promoter for binding sites of transcription factors and identified four potential AP-2 binding sites in addition to a p53 binding site reported previously. Although the CRYAB promoter contains four consensus binding sequences of AP-2 and can be activated by AP-2α either in the presence or absence of p53, the luciferase assay showed that AP-2β alone does not regulate the activity of the CRYAB promoter in the absence of p53. However, in the presence of p53, AP-2β can significantly increase the luciferase activities of both the CRYAB promoter and reporter vector pp53-TA-luc, which contains a p53-responsive element, but no AP-2 binding sites. These data suggest that AP-2β enhances transactivation of p53 and regulates CRYAB transcription via p53. Further study demonstrated that AP-2β interacts with p53 and augments its protein stability. Taken together, our results indicate that AP-2β up-regulates the transcription of the CRYAB gene through stabilizing p53.


AP-2β Tumor suppressor protein p53 αB-crystallin Protein stability 



This work was supported by National Natural Science Foundation of China (Grant Nos. 81071656, 31071150 and 30971570).


  1. 1.
    Dubin RA, Wawrousek EF, Piatigorsky J (1989) Expression of the murine alpha B-crystallin gene is not restricted to the lens. Mol Cell Biol 9(3):1083–1091PubMedGoogle Scholar
  2. 2.
    Iwaki T, Kume-Iwaki A, Liem RK, Goldman JE (1989) Alpha B-crystallin is expressed in non-lenticular tissues and accumulates in Alexander’s disease brain. Cell 57(1):71–78PubMedCrossRefGoogle Scholar
  3. 3.
    Louapre P, Grongnet JF, Tanguay RM, David JC (2005) Effects of hypoxia on stress proteins in the piglet heart at birth. Cell Stress Chaperones 10(1):17–23PubMedCrossRefGoogle Scholar
  4. 4.
    Liu S, Li J, Tao Y, Xiao X (2007) Small heat shock protein alphaB-crystallin binds to p53 to sequester its translocation to mitochondria during hydrogen peroxide-induced apoptosis. Biochem Biophys Res Commun 354(1):109–114PubMedCrossRefGoogle Scholar
  5. 5.
    Horwitz J (1992) Alpha-crystallin can function as a molecular chaperone. Proc Natl Acad Sci USA 89(21):10449–10453PubMedCrossRefGoogle Scholar
  6. 6.
    Kamradt MC, Lu M, Werner ME, Kwan T, Chen F, Strohecker A, Oshita S, Wilkinson JC, Yu C, Oliver PG, Duckett CS, Buchsbaum DJ, LoBuglio AF, Jordan VC, Cryns VL (2005) The small heat shock protein alpha B-crystallin is a novel inhibitor of TRAIL-induced apoptosis that suppresses the activation of caspase-3. J Biol Chem 280(12):11059–11066PubMedCrossRefGoogle Scholar
  7. 7.
    Moyano JV, Evans JR, Chen F, Lu M, Werner ME, Yehiely F, Diaz LK, Turbin D, Karaca G, Wiley E, Nielsen TO, Perou CM, Cryns VL (2006) AlphaB-crystallin is a novel oncoprotein that predicts poor clinical outcome in breast cancer. J Clin Invest 116(1):261–270PubMedCrossRefGoogle Scholar
  8. 8.
    Cherneva R, Petrov D, Georgiev O, Trifonova N (2010) Clinical usefulness of alpha-crystallin antibodies in non-small cell lung cancer patients. Interact Cardiovasc Thorac Surg 10(1):14–17PubMedCrossRefGoogle Scholar
  9. 9.
    Holcakova J, Hernychova L, Bouchal P, Brozkova K, Zaloudik J, Valik D, Nenutil R, Vojtesek B (2008) Identification of alphaB-crystallin, a biomarker of renal cell carcinoma by SELDI-TOF MS. Int J Biol Markers 23(1):48–53PubMedGoogle Scholar
  10. 10.
    Tang Q, Liu YF, Zhu XJ, Li YH, Zhu J, Zhang JP, Feng ZQ, Guan XH (2009) Expression and prognostic significance of the alpha B-crystallin gene in human hepatocellular carcinoma. Hum Pathol 40(3):300–305PubMedCrossRefGoogle Scholar
  11. 11.
    Takashi M, Katsuno S, Sakata T, Ohshima S, Kato K (1998) Different concentrations of two small stress proteins, alphaB crystallin and HSP27 in human urological tumor tissues. Urol Res 26(6):395–399PubMedCrossRefGoogle Scholar
  12. 12.
    Lung HL, Lo CC, Wong CC, Cheung AK, Cheong KF, Wong N, Kwong FM, Chan KC, Law EW, Tsao SW, Chua D, Sham JS, Cheng Y, Stanbridge EJ, Robertson GP, Lung ML (2008) Identification of tumor suppressive activity by irradiation microcell-mediated chromosome transfer and involvement of alpha B-crystallin in nasopharyngeal carcinoma. Int J Cancer 122(6):1288–1296PubMedCrossRefGoogle Scholar
  13. 13.
    Gopal-Srivastava R, Cvekl A, Piatigorsky J (1996) Pax-6 and alphaB-crystallin/small heat shock protein gene regulation in the murine lens. Interaction with the lens-specific regions, LSR1 and LSR2. J Biol Chem 271(38):23029–23036PubMedCrossRefGoogle Scholar
  14. 14.
    Ijichi N, Tsujimoto N, Iwaki T, Fukumaki Y, Iwaki A (2004) Distal Sox binding elements of the alphaB-crystallin gene show lens enhancer activity in transgenic mouse embryos. J Biochem 135(3):413–420PubMedCrossRefGoogle Scholar
  15. 15.
    Yang Y, Chauhan BK, Cveklova K, Cvekl A (2004) Transcriptional regulation of mouse alphaB- and gammaF-crystallin genes in lens: opposite promoter-specific interactions between Pax6 and large Maf transcription factors. J Mol Biol 344(2):351–368PubMedCrossRefGoogle Scholar
  16. 16.
    Sadamitsu C, Nagano T, Fukumaki Y, Iwaki A (2001) Heat shock factor 2 is involved in the upregulation of alphaB-crystallin by high extracellular potassium. J Biochem 129(5):813–820PubMedGoogle Scholar
  17. 17.
    Bosman JD, Yehiely F, Evans JR, Cryns VL (2010) Regulation of alphaB-crystallin gene expression by the transcription factor Ets1 in breast cancer. Breast Cancer Res Treat 119(1):63–70PubMedCrossRefGoogle Scholar
  18. 18.
    Evans JR, Bosman JD, Brown-Endres L, Yehiely F, Cryns VL (2009) Induction of the small heat shock protein alphaB-crystallin by genotoxic stress is mediated by p53 and p73. Breast Cancer Res Treat 122(1):159–168PubMedCrossRefGoogle Scholar
  19. 19.
    Watanabe G, Kato S, Nakata H, Ishida T, Ohuchi N, Ishioka C (2009) alphaB-crystallin: a novel p53-target gene required for p53-dependent apoptosis. Cancer Sci 100(12):2368–2375PubMedCrossRefGoogle Scholar
  20. 20.
    Zhou J, Qiao X, Xiao L, Sun W, Wang L, Li H, Wu Y, Ding X, Hu X, Zhou C, Zhang J (2010) Identification and characterization of the novel protein CCDC106 that interacts with p53 and promotes its degradation. FEBS Lett 584(6):1085–1090PubMedCrossRefGoogle Scholar
  21. 21.
    Ding X, Fan C, Zhou J, Zhong Y, Liu R, Ren K, Hu X, Luo C, Xiao S, Wang Y, Feng D, Zhang J (2006) GAS41 interacts with transcription factor AP-2beta and stimulates AP-2beta-mediated transactivation. Nucleic Acids Res 34(9):2570–2578PubMedCrossRefGoogle Scholar
  22. 22.
    Stabach PR, Thiyagarajan MM, Woodfield GW, Weigel RJ (2006) AP2alpha alters the transcriptional activity and stability of p53. Oncogene 25(15):2148–2159PubMedCrossRefGoogle Scholar
  23. 23.
    McPherson LA, Loktev AV, Weigel RJ (2002) Tumor suppressor activity of AP2alpha mediated through a direct interaction with p53. J Biol Chem 277(47):45028–45033PubMedCrossRefGoogle Scholar
  24. 24.
    Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, Frisch M, Bayerlein M, Werner T (2005) MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 21(13):2933–2942PubMedCrossRefGoogle Scholar
  25. 25.
    Efeyan A, Serrano M (2007) p53: guardian of the genome and policeman of the oncogenes. Cell Cycle 6(9):1006–1010PubMedCrossRefGoogle Scholar
  26. 26.
    Boehme KA, Blattner C (2009) Regulation of p53—insights into a complex process. Crit Rev Biochem Mol Biol 44(6):367–392PubMedCrossRefGoogle Scholar
  27. 27.
    Pellikainen JM, Kosma VM (2007) Activator protein-2 in carcinogenesis with a special reference to breast cancer—a mini review. Int J Cancer 120(10):2061–2067PubMedCrossRefGoogle Scholar
  28. 28.
    Deng WG, Jayachandran G, Wu G, Xu K, Roth JA, Ji L (2007) Tumor-specific activation of human telomerase reverses transcriptase promoter activity by activating enhancer-binding protein-2beta in human lung cancer cells. J Biol Chem 282(36):26460–26470PubMedCrossRefGoogle Scholar
  29. 29.
    Fuke T, Yoshizaki T, Kondo M, Morino K, Obata T, Ugi S, Nishio Y, Maeda S, Kashiwagi A, Maegawa H (2005) Transcription factor AP-2beta inhibits expression and secretion of leptin, an insulin-sensitizing hormone, in 3T3-L1 adipocytes. Int J Obes 34(4):670–678CrossRefGoogle Scholar
  30. 30.
    Park SW, He Y, Ha SG, Loh HH, Wei LN (2008) Epigenetic regulation of kappa opioid receptor gene in neuronal differentiation. Neuroscience 151(4):1034–1041PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Xiang Hu
    • 1
  • Lin Wang
    • 1
  • Wei Sun
    • 1
  • Ling Xiao
    • 1
  • Yuan Wu
    • 1
  • Yiming Zhuo
    • 1
  • Dongsong Nie
    • 2
  • Jianlin Zhou
    • 1
  • Jian Zhang
    • 1
  1. 1.Key Laboratory of Protein Chemistry and Developmental Biology of MOE, College of Life ScienceHunan Normal UniversityChangshaChina
  2. 2.Department of Chemistry and Chemical EngineeringHunan Institute of Science and TechnologyYueyangChina

Personalised recommendations