Molecular Biology Reports

, Volume 39, Issue 1, pp 25–32 | Cite as

Adeno-associated virus serotype 2 mediated transduction and coexpression of the human apoAI and SR-BI gene in HepG2 cells



Cholesterol efflux is the first step in the reverse cholesterol transport (RCT) pathway, removing excess cholesterol from tissues, including the arterial wall, thus preventing the development of atherosclerosis. Adeno-associated virus (rAAV) has demonstrated significant promise as a DNA-delivery vector to treat serious human diseases. In this study, we constructed recombinant adeno-associated viruses coexpressing apoAI and SR-BI successfully, the double gene mRNA and protein were both strongly expressed in transduced HepG2 cells. A novel safe and efficient method of promoting the reverse cholesterol transport (RCT) may be established. These results may provide a new method for gene therapy of Arteriosclerosis.


Adeno-associated virus Gene transfer Apolipoprotein A-I Scavenger receptor class B type I Reverse cholesterol transport (RCT) Expression 



This work was supported by Shenzhen Institute of Xiangya Biomedicine, Shenzhen 518057, China.


  1. 1.
    Fu Y, Hoang A, Escher G, Parton RG, Krozowski Z, Sviridov D (2004) Expression of Caveolin-1 enhances cholesterol efflux in hepatic cells. J Biol Chem 279:14140–14146PubMedCrossRefGoogle Scholar
  2. 2.
    Basso F, Freeman L, Knapper CL, Remaley A, Stonik J, Neufeld EB, Tansey T, Amar MJA, Fruchart-Najib J, Duverger N, Santamarina-Fojo S, Brewer HB Jr (2003) Role of the hepatic ABCA1 transporter in modulating intrahepatic cholesterol and plasma HDL cholesterol concentrations. J Lipid Res 44:296–302PubMedCrossRefGoogle Scholar
  3. 3.
    Barter P, Kastelein J, Nunn A, Hobbs R (2003) High density lipoproteins (HDLs) and atherosclerosis; the unanswered questions. Atherosclerosis 168:195–211PubMedCrossRefGoogle Scholar
  4. 4.
    Wang X, Collins HL, Ranalletta M, Fuki IV, Billheimer JT, Rothblat GH, Tall AR, Rader DJ (2007) Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo. J Clin Invest 117:2216–2224PubMedCrossRefGoogle Scholar
  5. 5.
    Ji Y, Jian B, Wang N, Sun Y, Moya ML, Phillips MC, Rothblat GH, Swaney JB, Tall AR (1997) Scavenger receptor BI promotes high density lipoprotein-mediated cellular cholesterol efflux. J Biol Chem 272:20982–20985PubMedCrossRefGoogle Scholar
  6. 6.
    Escher G, Krozowski Z, Croft KD, Sviridov D (2003) Expression of sterol 27-hydroxylase (CYP27A1) enhances cholesterol efflux. J Biol Chem 278:11015–11019PubMedCrossRefGoogle Scholar
  7. 7.
    Major AS, Dove DE, Ishiguro H, Su YR, Brown AM, Liu L, Carter J, Linton MF, Fazio S (2001) Increased cholesterol efflux in apolipoprotein AI (ApoAI)–producing macrophages as a mechanism for reduced atherosclerosis in ApoAI(−/−) mice. Arterioscler Thromb Vasc Biol 21:1790–1795PubMedCrossRefGoogle Scholar
  8. 8.
    Ishiguro H, Yoshida H, Major AS, Zhu T, Babaev VR, Linton MF, Fazio S (2001) Retrovirus-mediated expression of apolipoprotein A-I in the macrophage protects against atherosclerosis in vivo. J Biol Chem 276:36742–36748PubMedCrossRefGoogle Scholar
  9. 9.
    Okazaki H, Osuga Ji, Tsukamoto K, Isoo N, Kitamine T, Tamura Y, Tomita S, Sekiya M, Yahagi N, Iizuka Y, Ohashi K, Harada K, Gotoda T, Shimano H, Kimura S, Nagai R, Yamada N, Ishibashi S (2002) Elimination of cholesterol ester from macrophage foam cells by adenovirus-mediated gene transfer of hormone-sensitive lipase. J Biol Chem 277:31893–31899PubMedCrossRefGoogle Scholar
  10. 10.
    Rader DJ, Alexander ET, Weibel GL, Billheimer J, Rothblat GH (2009) The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis. J Lipid Res 50:189–194CrossRefGoogle Scholar
  11. 11.
    Tangirala RK, Tsukamoto K, Chun SH, Usher D, Pure E, Rader DJ (1999) Regression of atherosclerosis induced by liver-directed gene transfer of apolipoprotein A-I in mice. Circulation 100:1816–1822PubMedGoogle Scholar
  12. 12.
    Mandel RJ, Burger C, Snyder RO (2008) Viral vectors for in vivo gene transfer in Parkinson’s disease: properties and clinical grade production. J Expneurol 209:58–71Google Scholar
  13. 13.
    Centlivre M, Zhou X, Pouw SM, Weijer K, Kleibeuke W, Das AT, Blom B, Seppen J, Berkhout B, Legrand N (2010) Autoregulatory lentiviral vectors allow multiple cycles of doxycycline-inducible gene expression in human hematopoietic cells in vivo. Gene Ther 17:14–25PubMedCrossRefGoogle Scholar
  14. 14.
    Oka K, Davis AR, Chan L (2000) Recent advances in liver-directed gene therapy: implications for the treatment of dyslipidemia. Curr Opin Lipidol 11:179–186PubMedCrossRefGoogle Scholar
  15. 15.
    Monahan PE, Samulski RJ (2000) Adeno-associated virus vectors for gene therapy: more pros than cons? Mol Med Today 6:433–440PubMedCrossRefGoogle Scholar
  16. 16.
    Kay MA, Manna CS, Ragni MV, Larson PJ, Couto LB, McClell A, Glader B, Chew AJ, Tai SJ, Herzog RW et al (2000) Evidence for gene transfer and expression of factor IX in haemophilia B patients treated with an AAV vector. Nat Genet 24:257–261PubMedCrossRefGoogle Scholar
  17. 17.
    Auricchio A, Hildinger M, O’Connor E, Gao GP, Wilson JM (2001) Isolation of highly infectious and pure adeno-associated virus type 2 vectors with a single-step gravity-flow column. Hum Gene Ther 12:71–76PubMedCrossRefGoogle Scholar
  18. 18.
    Barter PJ, Rye K-A (1996) Molecular mechanisms of reverse cholesterol transport. Curr Opin Lipidol 7:82–87PubMedCrossRefGoogle Scholar
  19. 19.
    Rothblat GH, de la Llera-Moya M, Atger V et al (1999) Cell cholesterol efflux: Integration of old and new observations provides new insights. J Lipid Res 40:781–796PubMedGoogle Scholar
  20. 20.
    Zhang Y, Yu J, Unni E, Shao TC, Nan B, Snabboon T (2002) Monogene and polygene therapy for the treatment of experimental prostate cancers by use of apoptotic genes bax and bad driven by the prostate-specific promoter ARR(2)PB. Hum Gene Ther 13:2051–2064PubMedCrossRefGoogle Scholar
  21. 21.
    Pisarev AV, Shirokikh NE, Hellen CU (2005) Translation initiation by factor independent binding of eukaryotic ribosomes to internal ribosomal entry sites. C R Biol 328:589–605PubMedCrossRefGoogle Scholar
  22. 22.
    Grieger JC, Choi VW, Samulski RJ (2006) Production and characterization of adeno-associated viral vectors. Nat Protoc 1:1412–1428PubMedCrossRefGoogle Scholar
  23. 23.
    Buning H, BraunFalco M, Hallek M (2004) Progress in the use of adenoassociated viral vectors for gene therapy. Cells Tissues Organs 17:139–150Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Bingnan Li
    • 1
    • 2
  • Juan Zhang
    • 1
    • 2
  • Zhiyan Li
    • 1
    • 2
  • Mengqun Tan
    • 1
    • 2
  1. 1.Experimental Hematology Laboratory, Department of PhysiologyXiang-Ya School of Medicine, Central South UniversityChangshaChina
  2. 2.Shenzhen Institute of Xiangya BiomedicineShenzhenChina

Personalised recommendations