Skip to main content
Log in

Paraoxonase Arg 192 allele is an independent risk factor for three-vessel stenosis of coronary artery disease

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The role of the paraoxonase (PON1) codon 192 polymorphism [glutamine (Q)/arginine (R)] in coronary artery disease (CAD) is controversial. The aim of the present study was to evaluate whether the PON1 gene polymorphism is an independent risk factor for severity of coronary artery disease in patients from west of Iran. The PON1-Arg-192 genotypes were detected by PCR-RFLP in 414 individuals undergoing their first coronary angiography. Patients were placed into one of two groups: CAD and control without CAD or diabetes. The frequency of PON1-Arg-192 allele was significantly higher in the CAD (23.4 vs. 16%, P = 0.032) than in the control group and there was a higher risk of developing CAD (OR = 1.6, P = 0.02). In addition, this difference remained significant after adjustment for without history of diabetes (OR = 1.47, P = 0.048), presence of normolipidemia and absence of history of blood pressure (OR = 1.4, P = 0.05). This result indicated PON1-Arg-192 allele is a risk factor of CAD also when correcting for conventional risk factors. We found a significant association between the PON1-Arg-192 genotype (QR + RR) and the extent of CAD in CAD patients and CAD subjects without diabetes, represented by the increased frequency of three-vessel disease with OR = 1.49, P = 0.046; χ2 = 3.82, P = 0.048 and OR = 1.46, P = 0.05; χ2 = 3.48, P = 0.051, respectively. The CAD patients carrying PON1-Arg-192 genotype (QR + RR) had lower plasma HDL-C level (P = 0.019) and higher plasma LDL-C(P = 0.01) and TG(P = 0.05). Our results indicated that PON1-Arg-192 allele can be important independent risk factor of CAD in a west population of Iran, with carriers of PON1-Arg-192 having an increased frequency of three-vessel disease and also having a distinct plasma lipids profile. Larger collaborative studies are needed to confirm these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kharrazi H, Vaisi-Raygani A, Sabokroh AR, Pourmotabbed T (2006) Association between apolipoprotein E polymorphism and coronary artery disease in the Kermanshah population in Iran. Clin Biochem 39:613–616

    Article  PubMed  CAS  Google Scholar 

  2. Vaisi-Raygani A, Rahimi Z, Nomani H, Tavilani H, Pourmotabbed T (2007) The presence of apolipoprotein ε4 and ε2 alleles augments the risk of coronary artery disease in type 2 diabetic patients. Clin Biochem 40:1150–1156

    Article  PubMed  CAS  Google Scholar 

  3. Rahimi Z, Vaisi-Raygani A, Pourmotaabed T (2010) Association between apolipoprotein ε4 allele, factor V Leiden, and plasma lipid and lipoprotein levels with sickle cell disease in Southern Iran. Mol Biol Rep 37(4):2083–2091

    Article  PubMed  Google Scholar 

  4. Vaisi Raygani A, Rahimi Z, Entezami H, Kharrazi H, Bahrhemand F, Tavilani H, Rezaei M, Kiani A, Nomanpour B, Tavilani H, Pourmotabbed T (2008) Butyrylcholinesterase K ariants increase the risk of coronary artery disease in the population of western Iran. Scand J Clin Lab Invest 68(2):123–129

    Article  PubMed  CAS  Google Scholar 

  5. Vaisi Raygani A, Rahimi Z, Tavilani H, Pourmotabbed T (2010) Butyrylcholinesterase K variant and the APOE-ε4 allele work in synergy to increase the risk of coronary artery disease especially in diabetic patients. Mol Bio Rep 37(4):2083–2091

    Article  CAS  Google Scholar 

  6. Vaisi Raygani A, Tavilani H, Zahrai M, Rahimi Z, Sheikh N, Aminian M, Pourmotabbed T (2009) Serum butyrylcholinesterase activity and phenotype associations with lipid profile in stroke patients. Clin Biochem 42:210–214

    Article  PubMed  CAS  Google Scholar 

  7. Hatmi ZN, Tahvildari S, Gafarzadeh Motlag A, Sabouri Kashani A (2007) Prevalence of coronary artery disease risk factors in Iran: a population based survey. BMC Cardiovasc Disord 7(32):1–5

    Google Scholar 

  8. Imazio M, Bobbio M, Bergerone S, Barlera S, Maggioni AP (1998) Clinical and epidemiological characteristics of juvenile myocardial infarction in Italy: the GISSI experience. J Ital Cardiol 28(5):505–512

    CAS  Google Scholar 

  9. Antikainen M, Murtomaki S, Syvanne M, Pahlman R, Tahvanainen E, Jauhi-ainen M (1996) The Gln-Arg 191 polymorphism of the human paraoxonase gene (HUMPONA) is not associated with the risk of coronary artery disease in Finns. J Clin Invest 98:883–885

    Article  PubMed  CAS  Google Scholar 

  10. Gupta N, Gill K, Singh S (2009) Paraoxonases: Structure, gene polymorphism & role in coronary artery disease. Indian J Med Res 130:361–368

    PubMed  CAS  Google Scholar 

  11. Zama T, Murata M, Matsubara Y, Kawano K, Aoki N, Yoshina H et al (1997) A 192Arg variant of the human paraoxonase (HUMPONA) gene polymorphism is associated with an increased risk for coronary artery disease in Japanese. Arterioscler Thromb Vasc Biol 17:3565–3569

    Article  PubMed  CAS  Google Scholar 

  12. Pfohl M, Koch M, Enderle MD, Kühn R, Füllhase J, Karsch KR, Häring HU (1999) Paraoxonase 192 Gln/Arg gene polymorphism, coronary artery disease, and myocardial infarction in type 2 diabetes. Diabetes 48:623–627

    Article  PubMed  CAS  Google Scholar 

  13. Koubaa N, Nakbi A, Hammami S, Attia N, Mehri S, Hamda K, Farhat M, Miled A, Hammami M (2009) Association of homocysteine thiolactonase activity and PON1 polymorphisms with the severity of acute coronary syndrome. Clin Biochem 42:771–776

    Article  PubMed  CAS  Google Scholar 

  14. Davies HG (1996) The effect of the human serum paraoxonase polymorphism is reversed with diazoxon, soman and sarin. Nat Genet 14:334–336

    Article  PubMed  CAS  Google Scholar 

  15. La Du BN (1996) Structural and functional diversity of paraoxonases. Nat Med 2:1186–1187

    Article  PubMed  CAS  Google Scholar 

  16. Aviram M (1999) Does paraoxonase play a role in susceptibility to cardiovascular disease? Mol Med Today 5:66–78

    Article  Google Scholar 

  17. Osei-Hyiaman D, Hou L, Mengbai F, Zhiyin R, Zhiming Z, Kano K (2001) Coronary artery disease risk in Chinese type 2 diabetics: is there a role for paraoxonase 1 gene (Q192R) polymorphism? Eur J Endocrin 144:639–644

    Article  CAS  Google Scholar 

  18. Ruiz J, Blanche H, James RW, Garin MC, Vaisse C, Charpentier G, Cohen N, Morabia A, Passa P, Froguel P (1995) Gln-Arg192 polymorphism of paraoxonase and coronary heart disease in type 2 diabetes. Lancet 346:869–872

    Article  PubMed  CAS  Google Scholar 

  19. Mohamed RH, Mohamed RH, Karam RA, Abd El-Aziz TA (2010) The relationship between paraoxonase1-192 polymorphism and activity with coronary artery disease. Clin Biochem 43:553–558

    Article  PubMed  CAS  Google Scholar 

  20. Aydin M, Gokkusu C, Ozkok E, Tulubas F, Unlucerci Y, Pamukcu B, Ozbek Z, Umman B (2009) Association of genetic variants in methylenetetrahydrofolate reductase and paraoxonase-1 genes with homocysteine, folate and vitamin B12 in coronary artery disease. Mol Cell Biochem 325:199–208

    Article  PubMed  CAS  Google Scholar 

  21. Odawara M, Tachi Y, Yamashitya K (1997) Paraoxonase polymorphism (Gln192-Arg) is associated with coronary heart disease in Japanese noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 82:2257–2260

    Article  PubMed  CAS  Google Scholar 

  22. Serrato M, Marian AJ (1995) A variant of human paraoxonase/arylesterase (HUMPONA) gene is a risk factor for coronary artery disease. J Clin Invest 96:3005–3008

    Article  PubMed  CAS  Google Scholar 

  23. Taskıran P, Cam SF, Sekuri C, Tuzun N, Alioglu E, Altıntas N, Berdeli A (2009) The relationship between paraoxanase gene Leu-Met (55) and Gln-Arg (192) polymorphisms and coronary artery disease. Arch Turk Soc Cardiol 37(7):473–478

    Google Scholar 

  24. Suehiro T, Nakauchi Y, Yamamoto M, Arii K, Itoh H, Hamashige N, Hashimoto K (1996) Paraoxonase gene polymorphism in Japanese subjects with coronary heart disease. Int J Cardiol 57:69–73

    Article  PubMed  CAS  Google Scholar 

  25. Sanghera DK, Saha N, Aston CE, Kamboh MI (1997) Genetic polymorphism of paraoxonase and the risk of coronary heart disease. Arterioscler Thromb Vasc Biol 17:1067–1073

    Article  PubMed  CAS  Google Scholar 

  26. Herrmann SM, Blanc H, Poirier O, Arveiler D, Luc G, Evans A, Marques Vidal P, Bard JM, Cambien F (1996) The Gln/Arg polymorphism of human paraoxonase (PON 192) is not related to myocardial infarction in the ECTIM study. Athersclerosis 126:299–303

    Article  CAS  Google Scholar 

  27. World Health Organization (1999) WHO Study Group Report of a WHO consultation: part 1. Diagnosis and classification of diabetes mellitus. World Health Organization, Geneva

  28. Johan SWM, Weitzner G, Rozen R (1991) A rapid procedure for extracting genomic DNA from leukocytes. Nucleic Acids Res 19:408

    Article  Google Scholar 

  29. Crow JF (1999) Hardy, Weinberg and language impediments. Genetics 152(3):821–825

    PubMed  CAS  Google Scholar 

  30. Heijmans BT, Westendorp RG, Lagaay AM, Knook DL, Kluft C, Slagboom PE (2000) Common paraoxonase gene variants, mortality risk and fatal cardiovascular events in elderly subjects. Atherosclerosis 149:91–97

    Article  PubMed  CAS  Google Scholar 

  31. Wheeler JG, Keavney BD, Watkins H, Collins R, Danesh J (2004) Four paraoxonase gene polymorphisms in 11212 cases of coronary heart disease and 12786 controls: meta-analysis of 43 studies. Lancet 363:686–695

    Article  Google Scholar 

  32. Debbie T, Lawlor A, Day INM, Gaunt TR, Hinks LJ, Briggs PJ, Kiessling M, Timpson N, Smith GD, Ebrahim S (2004) The association of the PON1 Q192R polymorphism with coronary heart disease: findings from the British Women’s heart and health cohort study and a meta-analysis. BMC Genetics 5(17):1–13

    Google Scholar 

  33. Aviram M, Fuhrman B (1998) LDL oxidation by arterial wall macrophages depends on the oxidative status in the lipoprotein and in the cells: role of prooxidants vs. antioxidants. Mol Cell Biochem 188:149–159

    Article  PubMed  CAS  Google Scholar 

  34. Mackness MI, Arrol S, Durrington PN (1991) Paraoxonase prevents accumulation of lipoperoxides in low-density lipoprotein. FEBS Lett 286:152–154

    Article  PubMed  CAS  Google Scholar 

  35. Tarchalski J, Guzik P, Wysocki H (2003) Correlation between the extent of coronary atherosclerosis and lipid profile. Mol Cell Biochem 246:25–30

    Article  PubMed  CAS  Google Scholar 

  36. Steinberg D, Lewis A (1997) Conner Memorial Lecture. Oxidative modification of LDL and atherogenesis. Circulation 95:1062–1071

    PubMed  CAS  Google Scholar 

  37. Ajmal M, Ahmed W, Sadeque A, Ali SH, Bokhari SH, Ahmed N, Qamar R (2010) Identification of a recurrent insertion mutation in the LDLR gene in a Pakistani family with autosomal dominant hypercholesterolemia. Mol Biol Rep 37(8):3869–3875

    Article  PubMed  CAS  Google Scholar 

  38. AshokKumar M, Subhashini NG, SaiBabu R, Ramesh A, Cherian KM, Emmanuel C (2010) Genetic variants on apolipoprotein gene cluster influence triglycerides with a risk of coronary artery disease among Indians. Mol Biol Rep 37(1):521–527

    Article  PubMed  CAS  Google Scholar 

  39. Rahimi Z, Felehgari V, Rahimi M, Mozafari H, Yari K, Vaisi-Raygani A, Rezaei M, Malek-Khosravi S, Khazaie H (2011) The frequency of factor V Leiden mutation, ACE gene polymorphism, serum ACE activity and response to ACE inhibitor and angiotensin II receptor antagonist drugs in Iranians type II diabetic patients with microalbuminuria. Mol Biol Rep (in press)

  40. Aviram M, Rosenblat M, Bisgaier CL, Newton RS, Primo-Parmo SL, La Du BN (1998) Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions: a possible peroxidative role for PON1. J Clin Invest 101:1581–1590

    Article  PubMed  CAS  Google Scholar 

  41. Tabur S, Torun AN, Sabuncu T, Turan MN, Celik H, Ocak AR, Aksoy N (2010) Nondiabetic metabolic syndrome and obesity do not affect serum paraoxonase and arylesterase activities but do affect oxidative stress and inflammation. Eur J Endocrinol 162(3):535–541

    Article  PubMed  CAS  Google Scholar 

  42. Mackness B, Mackness MI, Arrol S, Turkie W, Durrington PN (1998) Effect of the human serum PON1 55 and 192 genetic polymorphisms on the protection by high density lipoprotein against low density lipoprotein oxidative modification. FEBS Lett 423:57–60

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Kermanshah University of Medical Sciences, Kermanshah, Iran (grant numbers 86049); All authors contributed equally to this study. This research did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asad Vaisi-Raygani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaisi-Raygani, A., Ghaneialvar, H., Rahimi, Z. et al. Paraoxonase Arg 192 allele is an independent risk factor for three-vessel stenosis of coronary artery disease. Mol Biol Rep 38, 5421–5428 (2011). https://doi.org/10.1007/s11033-011-0696-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-0696-3

Keywords

Navigation