Molecular Biology Reports

, 38:5421 | Cite as

Paraoxonase Arg 192 allele is an independent risk factor for three-vessel stenosis of coronary artery disease

  • Asad Vaisi-Raygani
  • Hori Ghaneialvar
  • Zohreh Rahimi
  • Haidar Tavilani
  • Tayebeh Pourmotabbed
  • Ebrahim Shakiba
  • Aliakbar Vaisi-Raygani
  • Amir Kiani
  • Mahdi Aminian
  • Reza Alibakhshi
  • Cynthia Bartels


The role of the paraoxonase (PON1) codon 192 polymorphism [glutamine (Q)/arginine (R)] in coronary artery disease (CAD) is controversial. The aim of the present study was to evaluate whether the PON1 gene polymorphism is an independent risk factor for severity of coronary artery disease in patients from west of Iran. The PON1-Arg-192 genotypes were detected by PCR-RFLP in 414 individuals undergoing their first coronary angiography. Patients were placed into one of two groups: CAD and control without CAD or diabetes. The frequency of PON1-Arg-192 allele was significantly higher in the CAD (23.4 vs. 16%, P = 0.032) than in the control group and there was a higher risk of developing CAD (OR = 1.6, P = 0.02). In addition, this difference remained significant after adjustment for without history of diabetes (OR = 1.47, P = 0.048), presence of normolipidemia and absence of history of blood pressure (OR = 1.4, P = 0.05). This result indicated PON1-Arg-192 allele is a risk factor of CAD also when correcting for conventional risk factors. We found a significant association between the PON1-Arg-192 genotype (QR + RR) and the extent of CAD in CAD patients and CAD subjects without diabetes, represented by the increased frequency of three-vessel disease with OR = 1.49, P = 0.046; χ2 = 3.82, P = 0.048 and OR = 1.46, P = 0.05; χ2 = 3.48, P = 0.051, respectively. The CAD patients carrying PON1-Arg-192 genotype (QR + RR) had lower plasma HDL-C level (P = 0.019) and higher plasma LDL-C(P = 0.01) and TG(P = 0.05). Our results indicated that PON1-Arg-192 allele can be important independent risk factor of CAD in a west population of Iran, with carriers of PON1-Arg-192 having an increased frequency of three-vessel disease and also having a distinct plasma lipids profile. Larger collaborative studies are needed to confirm these results.


Paraoxonase Coronary artery disease Diabetes mellitus Genetic polymorphism Lipid profile Vessel stenosis 



This work was supported by the Kermanshah University of Medical Sciences, Kermanshah, Iran (grant numbers 86049); All authors contributed equally to this study. This research did not receive any specific grant from any funding agency in the public, commercial or not-for-profit sector.

Conflict of interest



  1. 1.
    Kharrazi H, Vaisi-Raygani A, Sabokroh AR, Pourmotabbed T (2006) Association between apolipoprotein E polymorphism and coronary artery disease in the Kermanshah population in Iran. Clin Biochem 39:613–616PubMedCrossRefGoogle Scholar
  2. 2.
    Vaisi-Raygani A, Rahimi Z, Nomani H, Tavilani H, Pourmotabbed T (2007) The presence of apolipoprotein ε4 and ε2 alleles augments the risk of coronary artery disease in type 2 diabetic patients. Clin Biochem 40:1150–1156PubMedCrossRefGoogle Scholar
  3. 3.
    Rahimi Z, Vaisi-Raygani A, Pourmotaabed T (2010) Association between apolipoprotein ε4 allele, factor V Leiden, and plasma lipid and lipoprotein levels with sickle cell disease in Southern Iran. Mol Biol Rep 37(4):2083–2091PubMedCrossRefGoogle Scholar
  4. 4.
    Vaisi Raygani A, Rahimi Z, Entezami H, Kharrazi H, Bahrhemand F, Tavilani H, Rezaei M, Kiani A, Nomanpour B, Tavilani H, Pourmotabbed T (2008) Butyrylcholinesterase K ariants increase the risk of coronary artery disease in the population of western Iran. Scand J Clin Lab Invest 68(2):123–129PubMedCrossRefGoogle Scholar
  5. 5.
    Vaisi Raygani A, Rahimi Z, Tavilani H, Pourmotabbed T (2010) Butyrylcholinesterase K variant and the APOE-ε4 allele work in synergy to increase the risk of coronary artery disease especially in diabetic patients. Mol Bio Rep 37(4):2083–2091CrossRefGoogle Scholar
  6. 6.
    Vaisi Raygani A, Tavilani H, Zahrai M, Rahimi Z, Sheikh N, Aminian M, Pourmotabbed T (2009) Serum butyrylcholinesterase activity and phenotype associations with lipid profile in stroke patients. Clin Biochem 42:210–214PubMedCrossRefGoogle Scholar
  7. 7.
    Hatmi ZN, Tahvildari S, Gafarzadeh Motlag A, Sabouri Kashani A (2007) Prevalence of coronary artery disease risk factors in Iran: a population based survey. BMC Cardiovasc Disord 7(32):1–5Google Scholar
  8. 8.
    Imazio M, Bobbio M, Bergerone S, Barlera S, Maggioni AP (1998) Clinical and epidemiological characteristics of juvenile myocardial infarction in Italy: the GISSI experience. J Ital Cardiol 28(5):505–512Google Scholar
  9. 9.
    Antikainen M, Murtomaki S, Syvanne M, Pahlman R, Tahvanainen E, Jauhi-ainen M (1996) The Gln-Arg 191 polymorphism of the human paraoxonase gene (HUMPONA) is not associated with the risk of coronary artery disease in Finns. J Clin Invest 98:883–885PubMedCrossRefGoogle Scholar
  10. 10.
    Gupta N, Gill K, Singh S (2009) Paraoxonases: Structure, gene polymorphism & role in coronary artery disease. Indian J Med Res 130:361–368PubMedGoogle Scholar
  11. 11.
    Zama T, Murata M, Matsubara Y, Kawano K, Aoki N, Yoshina H et al (1997) A 192Arg variant of the human paraoxonase (HUMPONA) gene polymorphism is associated with an increased risk for coronary artery disease in Japanese. Arterioscler Thromb Vasc Biol 17:3565–3569PubMedCrossRefGoogle Scholar
  12. 12.
    Pfohl M, Koch M, Enderle MD, Kühn R, Füllhase J, Karsch KR, Häring HU (1999) Paraoxonase 192 Gln/Arg gene polymorphism, coronary artery disease, and myocardial infarction in type 2 diabetes. Diabetes 48:623–627PubMedCrossRefGoogle Scholar
  13. 13.
    Koubaa N, Nakbi A, Hammami S, Attia N, Mehri S, Hamda K, Farhat M, Miled A, Hammami M (2009) Association of homocysteine thiolactonase activity and PON1 polymorphisms with the severity of acute coronary syndrome. Clin Biochem 42:771–776PubMedCrossRefGoogle Scholar
  14. 14.
    Davies HG (1996) The effect of the human serum paraoxonase polymorphism is reversed with diazoxon, soman and sarin. Nat Genet 14:334–336PubMedCrossRefGoogle Scholar
  15. 15.
    La Du BN (1996) Structural and functional diversity of paraoxonases. Nat Med 2:1186–1187PubMedCrossRefGoogle Scholar
  16. 16.
    Aviram M (1999) Does paraoxonase play a role in susceptibility to cardiovascular disease? Mol Med Today 5:66–78CrossRefGoogle Scholar
  17. 17.
    Osei-Hyiaman D, Hou L, Mengbai F, Zhiyin R, Zhiming Z, Kano K (2001) Coronary artery disease risk in Chinese type 2 diabetics: is there a role for paraoxonase 1 gene (Q192R) polymorphism? Eur J Endocrin 144:639–644CrossRefGoogle Scholar
  18. 18.
    Ruiz J, Blanche H, James RW, Garin MC, Vaisse C, Charpentier G, Cohen N, Morabia A, Passa P, Froguel P (1995) Gln-Arg192 polymorphism of paraoxonase and coronary heart disease in type 2 diabetes. Lancet 346:869–872PubMedCrossRefGoogle Scholar
  19. 19.
    Mohamed RH, Mohamed RH, Karam RA, Abd El-Aziz TA (2010) The relationship between paraoxonase1-192 polymorphism and activity with coronary artery disease. Clin Biochem 43:553–558PubMedCrossRefGoogle Scholar
  20. 20.
    Aydin M, Gokkusu C, Ozkok E, Tulubas F, Unlucerci Y, Pamukcu B, Ozbek Z, Umman B (2009) Association of genetic variants in methylenetetrahydrofolate reductase and paraoxonase-1 genes with homocysteine, folate and vitamin B12 in coronary artery disease. Mol Cell Biochem 325:199–208PubMedCrossRefGoogle Scholar
  21. 21.
    Odawara M, Tachi Y, Yamashitya K (1997) Paraoxonase polymorphism (Gln192-Arg) is associated with coronary heart disease in Japanese noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 82:2257–2260PubMedCrossRefGoogle Scholar
  22. 22.
    Serrato M, Marian AJ (1995) A variant of human paraoxonase/arylesterase (HUMPONA) gene is a risk factor for coronary artery disease. J Clin Invest 96:3005–3008PubMedCrossRefGoogle Scholar
  23. 23.
    Taskıran P, Cam SF, Sekuri C, Tuzun N, Alioglu E, Altıntas N, Berdeli A (2009) The relationship between paraoxanase gene Leu-Met (55) and Gln-Arg (192) polymorphisms and coronary artery disease. Arch Turk Soc Cardiol 37(7):473–478Google Scholar
  24. 24.
    Suehiro T, Nakauchi Y, Yamamoto M, Arii K, Itoh H, Hamashige N, Hashimoto K (1996) Paraoxonase gene polymorphism in Japanese subjects with coronary heart disease. Int J Cardiol 57:69–73PubMedCrossRefGoogle Scholar
  25. 25.
    Sanghera DK, Saha N, Aston CE, Kamboh MI (1997) Genetic polymorphism of paraoxonase and the risk of coronary heart disease. Arterioscler Thromb Vasc Biol 17:1067–1073PubMedCrossRefGoogle Scholar
  26. 26.
    Herrmann SM, Blanc H, Poirier O, Arveiler D, Luc G, Evans A, Marques Vidal P, Bard JM, Cambien F (1996) The Gln/Arg polymorphism of human paraoxonase (PON 192) is not related to myocardial infarction in the ECTIM study. Athersclerosis 126:299–303CrossRefGoogle Scholar
  27. 27.
    World Health Organization (1999) WHO Study Group Report of a WHO consultation: part 1. Diagnosis and classification of diabetes mellitus. World Health Organization, GenevaGoogle Scholar
  28. 28.
    Johan SWM, Weitzner G, Rozen R (1991) A rapid procedure for extracting genomic DNA from leukocytes. Nucleic Acids Res 19:408CrossRefGoogle Scholar
  29. 29.
    Crow JF (1999) Hardy, Weinberg and language impediments. Genetics 152(3):821–825PubMedGoogle Scholar
  30. 30.
    Heijmans BT, Westendorp RG, Lagaay AM, Knook DL, Kluft C, Slagboom PE (2000) Common paraoxonase gene variants, mortality risk and fatal cardiovascular events in elderly subjects. Atherosclerosis 149:91–97PubMedCrossRefGoogle Scholar
  31. 31.
    Wheeler JG, Keavney BD, Watkins H, Collins R, Danesh J (2004) Four paraoxonase gene polymorphisms in 11212 cases of coronary heart disease and 12786 controls: meta-analysis of 43 studies. Lancet 363:686–695CrossRefGoogle Scholar
  32. 32.
    Debbie T, Lawlor A, Day INM, Gaunt TR, Hinks LJ, Briggs PJ, Kiessling M, Timpson N, Smith GD, Ebrahim S (2004) The association of the PON1 Q192R polymorphism with coronary heart disease: findings from the British Women’s heart and health cohort study and a meta-analysis. BMC Genetics 5(17):1–13Google Scholar
  33. 33.
    Aviram M, Fuhrman B (1998) LDL oxidation by arterial wall macrophages depends on the oxidative status in the lipoprotein and in the cells: role of prooxidants vs. antioxidants. Mol Cell Biochem 188:149–159PubMedCrossRefGoogle Scholar
  34. 34.
    Mackness MI, Arrol S, Durrington PN (1991) Paraoxonase prevents accumulation of lipoperoxides in low-density lipoprotein. FEBS Lett 286:152–154PubMedCrossRefGoogle Scholar
  35. 35.
    Tarchalski J, Guzik P, Wysocki H (2003) Correlation between the extent of coronary atherosclerosis and lipid profile. Mol Cell Biochem 246:25–30PubMedCrossRefGoogle Scholar
  36. 36.
    Steinberg D, Lewis A (1997) Conner Memorial Lecture. Oxidative modification of LDL and atherogenesis. Circulation 95:1062–1071PubMedGoogle Scholar
  37. 37.
    Ajmal M, Ahmed W, Sadeque A, Ali SH, Bokhari SH, Ahmed N, Qamar R (2010) Identification of a recurrent insertion mutation in the LDLR gene in a Pakistani family with autosomal dominant hypercholesterolemia. Mol Biol Rep 37(8):3869–3875PubMedCrossRefGoogle Scholar
  38. 38.
    AshokKumar M, Subhashini NG, SaiBabu R, Ramesh A, Cherian KM, Emmanuel C (2010) Genetic variants on apolipoprotein gene cluster influence triglycerides with a risk of coronary artery disease among Indians. Mol Biol Rep 37(1):521–527PubMedCrossRefGoogle Scholar
  39. 39.
    Rahimi Z, Felehgari V, Rahimi M, Mozafari H, Yari K, Vaisi-Raygani A, Rezaei M, Malek-Khosravi S, Khazaie H (2011) The frequency of factor V Leiden mutation, ACE gene polymorphism, serum ACE activity and response to ACE inhibitor and angiotensin II receptor antagonist drugs in Iranians type II diabetic patients with microalbuminuria. Mol Biol Rep (in press)Google Scholar
  40. 40.
    Aviram M, Rosenblat M, Bisgaier CL, Newton RS, Primo-Parmo SL, La Du BN (1998) Paraoxonase inhibits high-density lipoprotein oxidation and preserves its functions: a possible peroxidative role for PON1. J Clin Invest 101:1581–1590PubMedCrossRefGoogle Scholar
  41. 41.
    Tabur S, Torun AN, Sabuncu T, Turan MN, Celik H, Ocak AR, Aksoy N (2010) Nondiabetic metabolic syndrome and obesity do not affect serum paraoxonase and arylesterase activities but do affect oxidative stress and inflammation. Eur J Endocrinol 162(3):535–541PubMedCrossRefGoogle Scholar
  42. 42.
    Mackness B, Mackness MI, Arrol S, Turkie W, Durrington PN (1998) Effect of the human serum PON1 55 and 192 genetic polymorphisms on the protection by high density lipoprotein against low density lipoprotein oxidative modification. FEBS Lett 423:57–60PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Asad Vaisi-Raygani
    • 1
    • 2
  • Hori Ghaneialvar
    • 2
  • Zohreh Rahimi
    • 3
    • 2
  • Haidar Tavilani
    • 4
  • Tayebeh Pourmotabbed
    • 5
  • Ebrahim Shakiba
    • 2
  • Aliakbar Vaisi-Raygani
    • 6
  • Amir Kiani
    • 7
  • Mahdi Aminian
    • 8
  • Reza Alibakhshi
    • 2
  • Cynthia Bartels
    • 9
  1. 1.Fertility and Infertility Research CenterKermanshah University of Medical SciencesKermanshahIran
  2. 2.Department of Clinical BiochemistryKermanshah University of Medical SciencesKermanshahIran
  3. 3.Medical Biology Research CenterKermanshah University of Medical SciencesKermanshahIran
  4. 4.Department of Clinical BiochemistryHamadan University of Medical SciencesHamadanIran
  5. 5.Department of Molecular Sciences, Health Science CenterUniversity of TennesseeKnoxvilleUSA
  6. 6.Department of Operating RoomKermanshah University of Medical SciencesKermanshahIran
  7. 7.Department of ToxicologyKermanshah University of Medical SciencesKermanshahIran
  8. 8.Department of Clinical BiochemistryTehran University of Medical SciencesTehranIran
  9. 9.Genetics DepartmentCase Western Reserve UniversityClevelandUSA

Personalised recommendations