Molecular Biology Reports

, Volume 38, Issue 5, pp 3137–3144 | Cite as

Polymorphisms in the HPC/ELAC-2 and alpha 1-antitrypsin genes that correlate with human diseases in a North Indian population

  • Ranbir C. Sobti
  • Hitender Thakur
  • Lipsy Gupta
  • Ashok K. Janmeja
  • Amlesh Seth
  • Sharwan K. Singh


Two genes HPC/ELAC-2 and AAT were studied in north Indian population. HPC/ELAC-2 was studied in prostate cancer cases and AAT was studied in COPD patients. HPC/ELAC-2 is considered as an important cancer-susceptibility gene in prostate cancer. There are two common polymorphisms of this gene, i.e., Ser217Leu and Ala541Thr. Alpha 1 antitrypsin is a highly polymorphic anti-elastase enzyme, especially active in the protection of alveoli and liver. In the present study, we observed the distribution of two deficient alleles PiZ and Pi S in COPD patients. We extracted the DNA from 157 prostate cancer cases, 200 COPD patients, 170 BPH and 370 healthy controls. The polymorphisms were studied by PCR–RFLP technique. The mutant genotype (Leu/Leu) of HPC/ELAC-2 was present in 9.6, 7.6 and 5.9% of BPH, cancer cases and healthy controls, respectively. Higher risk of Ser/Leu as well as Leu/Leu had shown when compared to healthy controls. That was about 1.5 and 1.7-fold (OR = 1.55; 95% CI = 0.96–2.51; OR = 1.70; 95% CI = 0.74–3.92), respectively. Risk was found to be increased in smokers and those consuming non-vegetarian diet. Our results suggest that the HPC/ELAC-2 polymorphisms, especially in localized cases, could help to predict prostate cancer risk and confirm its high prevalence of the leu/leu allele in north Indian population. Considering heterozygous PiZ genotype, we obtained an OR of 3.82 (P = 0.03). Multivariate analysis adjusted by age sex and drinking habit showed 4.15-fold increased risk for COPD in PiZ heterozygous individuals. No increased risk was observed in the individuals carrying PiS alleles.


Prostate cancer HPC/ELAC-2 polymorphisms BPH COPD AAT 



We greatly acknowledge the help of the staff and patients of the various hospitals involved. The study was funded by ICMR, Delhi.


  1. 1.
    Pienta KJ, Esper PS (1993) Is dietary fat a risk factor for prostate cancer? J Natl Cancer Inst 85:1538–1540PubMedCrossRefGoogle Scholar
  2. 2.
    Quinn M, Babb P (2002) Patterns and trends in prostate cancer incidence, survival, prevalence and mortality. Part II: individual countries. BJU Int 90:174–184PubMedCrossRefGoogle Scholar
  3. 3.
    Rebbeck TR, Walker AH, Zeigler-Johnson C, Weisburg S, Martin AM, Nathanson KL, Wein AJ, Malkowicz SB (2000) Association of HPC2/ELAC2 genotypes and prostate cancer. Am J Hum Genet 67:1014–1019PubMedCrossRefGoogle Scholar
  4. 4.
    Suarez BK, Gerhard DS, Lin J, Haberer B, Nguyen L, Kesterson NK, Catalona WJ (2001) Polymorphisms in the prostate cancer susceptibility gene HPC2/ELAC2 in multiplex families and healthy controls. Cancer Res 61:4982–4984PubMedGoogle Scholar
  5. 5.
    Rokman A, Ikonen T, Mononen N, Autio V, Matikainen MP, Koivisto PA, Tammela TLJ, Kallioniemi OP, Schleutker J (2001) ELAC2/HPC2 involvement in hereditary and sporadic prostate cancer. Cancer Res 61:6038–6041PubMedGoogle Scholar
  6. 6.
    Vesprini D, Nam RK, Trachtenberg J, Jewett MA, Tavtigian SV, Emami M, Ho M, Toi A, Narod SA (2001) HPC2 variants and screen-detected prostate cancer. Am J Hum Genet 68:912–917PubMedCrossRefGoogle Scholar
  7. 7.
    Wang L, McDonnell SK, Elkins DA, Slager SL, Christensen E, Marks AF, Cunningham JM, Peterson BJ, Jacobsen SJ, Cerhan JR, Blute ML, Schaid DJ, Thibodeau SN (2001) Role of HPC2/ELAC2 in hereditary prostate cancer. Cancer Res 61:6494–6499PubMedGoogle Scholar
  8. 8.
    Xu J, Zheng SL, Carpten JD, Nupponen NN, Robbins CM, Mestre J, Moses TY, Faith DA, Kelly BD, Isaacs SD, Wiley KE, Ewing CM, Bujnovszky P, Chang B, Bailey-Wilson JER, Walsh PC, Trent JM, Meyers DA, Isaacs WB (2001) Evaluation of linkage and association of HPC2/ELAC2 in patients with familial or sporadic prostate cancer. Am J Hum Genet 68:901–911PubMedCrossRefGoogle Scholar
  9. 9.
    Lomas DA, Silverman EK (2001) The genetics of chronic obstructive pulmonary disease. Respir Res 2:20–26PubMedCrossRefGoogle Scholar
  10. 10.
    Tobin MJ, Cook PJ, Hutchison DC (1983) Alpha 1 antitrypsin deficiency: the clinical and physiological features of pulmonary emphysema in subjects homozygous for Pi type Z: a survey by the British Thoracic Association. Br J Dis Chest 77:14–27PubMedCrossRefGoogle Scholar
  11. 11.
    Brantly M, Nukiwa T, Crystal RG (1988) Molecular basis of alpha-1-antitrypsin deficiency. Am J Med 84:13–31PubMedGoogle Scholar
  12. 12.
    Carrell RW, Lomas DA, Sidhar S, Foreman R (1996) Alpha 1-antitrypsin deficiency: a conformational disease. Chest 110:243S–247SPubMedCrossRefGoogle Scholar
  13. 13.
    Mahadeva R, Lomas DA (1998) Genetics and respiratory disease. 2. Alpha 1-antitrypsin deficiency, cirrhosis and emphysema. Thorax 53:501–505PubMedCrossRefGoogle Scholar
  14. 14.
    Eriksson S (1996) A 30-year perspective on alpha 1-antitrypsin deficiency. Chest 110:237S–242SPubMedCrossRefGoogle Scholar
  15. 15.
    Mastrangeli A, Crystal RG (1996) Alpha 1-antitrypsin: an introduction. In: Crystal RG (ed) Alpha 1-antitrypsin deficiency, biology, pathogenesis, clinical manifestations, therapy. Marcel Dekker, Inc, New York, pp 3–18Google Scholar
  16. 16.
    Kueppers F, Briscoe WA, Bearn AG (1964) Hereditary deficiency of serum alpha-l-antitrypsin. Science 146:1678–1679PubMedCrossRefGoogle Scholar
  17. 17.
    Jeppsson JO (1976) Amino acid substitution Glu leads to Lys alpha1-antitrypsin PiZ. FEBS Lett 65:195–197PubMedCrossRefGoogle Scholar
  18. 18.
    Owen MC, Carrell RW, Brennan SO (1976) The abnormality of the S variant of human alpha-1-antitrypsin. Biochim Biophys Acta 453:257–261PubMedGoogle Scholar
  19. 19.
    Crystal RG (1989) The alpha 1-antitrypsin gene and its deficiency states. Trends Genet 5:411–417PubMedCrossRefGoogle Scholar
  20. 20.
    Brantly ML, Paul LD, Miller BH, Falk RT, Wu M, Crystal RG (1988) Clinical features and history of the destructive lung disease associated with alpha-1-antitrypsin deficiency of adults with pulmonary symptoms. Am Rev Respir Dis 138:327–336PubMedGoogle Scholar
  21. 21.
    Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 1–18Google Scholar
  22. 22.
    Dry PJ (1991) Rapid detection of alpha-1-antitrypsin deficiency by analysis of a PCR-induced TaqI restriction site. Hum Genet 87:742–744PubMedCrossRefGoogle Scholar
  23. 23.
    Tavtigian SV, Simard J, Teng DHF, Abtin V, Baumgard M, Beck A, Camp NJ, Carillo AR, Chen Y, Dayananth P, Desrochers M, Dumont M, Farnham JM, Frank D, Frye C, Ghaffari S, Gupte JS, Hu R, Iliev D, Janecki T, Kort EN, Laity KE, Leavitt A, Leblanc G, Morrison JM, Pederson A, Penn B, Peterson KT, Reid JE, Richards S, Schroeder M, Smith R, Snyder SC, Swedlund B, Swensen J, Thomas A, Tranchant M, Woodland Ann-Marie, Labrie F, Skolnick MH, Neuhausen S, Rommens J, Cannon-Albright LA (2001) A candidate prostate cancer susceptibility gene at chromosome 17p. Nat Genet 27:172–180PubMedCrossRefGoogle Scholar
  24. 24.
    Stanford JL, Sabacan LP, Noonan EA, Iwasaki L, Shu J, Feng Z, Ostrander EA (2003) Association of HPC2/ELAC2 polymorphisms with risk of prostate cancer in a population-based study. Cancer Epidemiol Biomarkers Prev 12:876–881PubMedGoogle Scholar
  25. 25.
    Takahashi H, Lu W, Watanabe M, Katoh T, Furusato M, Tsukino H, Nakao H, Sudo A, Suzuki H, Akakura K, Ikemoto I, Asano K, Ito T, Wakui S, Muto T, Hano H (2003) Ser217Leu polymorphism of the HPC2/ELAC2 gene associated with prostatic cancer risk in Japanese men. Int J Cancer 107:224–228PubMedCrossRefGoogle Scholar
  26. 26.
    Noonan-Wheeler FC, Wu W, Roehl KA, Klim A, Haugen J, Suarez BK, Kibel AS (2006) Association of hereditary prostate cancer gene polymorphic variants with sporadic aggressive prostate carcinoma. Prostate 66:49–56PubMedCrossRefGoogle Scholar
  27. 27.
    Meitz JC, Edwards SM, Easton DF, Murkin A, Ardern-Jones A, Jackson RA, Williams S, Dearnaley DP, Stratton MR, Houlston RS, Eeles RA (2002) HPC2/ELAC2 polymorphisms and prostate cancer risk: analysis by age of onset of disease. Br J Cancer 87:905–908PubMedCrossRefGoogle Scholar
  28. 28.
    Sandford AJ, Weir TD, Spinelli JJ, Pare PD (1999) Z and S mutations of the alpha1-antitrypsin gene and the risk of chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 20:287–291PubMedGoogle Scholar
  29. 29.
    Cox DW, Woo SL, Mansfield T (1985) DNA restriction fragments associated with alpha 1-antitrypsin indicate a single origin for deficiency allele PI Z. Nature 316:79–81PubMedCrossRefGoogle Scholar
  30. 30.
    Dahl M, Tybjaerg-Hansen A, Lange P, Vestbo J, Nordestgaard BG (2002) Change in lung function and morbidity from chronic obstructive pulmonary disease in alpha1-antitrypsin MZ heterozygotes: a longitudinal study of the general population. Ann Intern Med 136:270–279PubMedGoogle Scholar
  31. 31.
    Seersholm N, Wilcke JT, Kok-Jensen A, Dirksen A (2000) Risk of hospital admission for obstructive pulmonary disease in alpha(1)-antitrypsin heterozygotes of phenotype PiMZ. Am J Respir Crit Care Med 161:81–84PubMedGoogle Scholar
  32. 32.
    Lieberman J, Winter B, Sastre A (1986) Alpha 1-antitrypsin Pi-types in 965 COPD patients. Chest 89:370–373PubMedCrossRefGoogle Scholar
  33. 33.
    Janus ED (1988) Alpha 1-antitrypsin Pi types in COPD patients. Chest 94:446–447PubMedCrossRefGoogle Scholar
  34. 34.
    Tarjan E, Magyar P, Váczi Z, Lantos A, Vaszár L (1994) Longitudinal lung function study in heterozygous PiMZ phenotype subjects. Eur Respir J 7:2199–2204PubMedCrossRefGoogle Scholar
  35. 35.
    Larson RK, Barman ML, Kueppers F, Fudenberg HH (1970) Genetic and environmental determinants of chronic obstructive pulmonary disease. Ann Intern Med 72:627–632PubMedGoogle Scholar
  36. 36.
    Kueppers F, Miller RD, Gordon H et al (1977) Familial prevalence of chronic obstructive pulmonary disease in a matched pair study. Am J Med 63:336–342PubMedCrossRefGoogle Scholar
  37. 37.
    Rybicki BA, Beaty TH, Cohen BH (1990) Major genetic mechanisms in pulmonary function. J Clin Epidemiol 43:667–675PubMedCrossRefGoogle Scholar
  38. 38.
    Silverman EK, Chapman HA, Drazen JM, Weiss ST, Rosner B, Campbell EJ, O’Donnell WJ, Reilly JJ, Ginns L, Mentzer S, Wain J, Speizer FE (1998) Genetic epidemiology of severe, early-onset chronic obstructive pulmonary disease. Risk to relatives for airflow obstruction and chronic bronchitis. Am J Respir Crit Care Med 157:1770–1778PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Ranbir C. Sobti
    • 1
  • Hitender Thakur
    • 1
  • Lipsy Gupta
    • 1
  • Ashok K. Janmeja
    • 2
  • Amlesh Seth
    • 3
  • Sharwan K. Singh
    • 4
  1. 1.Department of BiotechnologyPanjab UniversityChandigarhIndia
  2. 2.Department of Pulmonary MedicineGovernment Medical College and HospitalChandigarhIndia
  3. 3.Department of UrologyAll India Institute of Medical SciencesNew DelhiIndia
  4. 4.Department of UrologyPost Graduate Institute of Medical Education and ResearchChandigarhIndia

Personalised recommendations