Molecular Biology Reports

, Volume 38, Issue 5, pp 3129–3135 | Cite as

Molecular characterization and polymorphisms of the caprine Somatostatin (SST) and SST Receptor 1 (SSTR1) genes that are linked with growth traits

  • Q. J. Jin
  • J. J. Sun
  • X. T. Fang
  • C. L. Zhang
  • L. Yang
  • D. X. Chen
  • X. Y. Shi
  • Y. Du
  • X. Y. Lan
  • H. Chen


Somatostatin (SST) and its receptors (SSTR1-5) appear to be important in central regulation of many metabolic systems that affect growth, adiposity and nutrient absorption. In this study, we investigated polymorphisms within the caprine SST and SSTR1 genes and determined their relationship with growth traits. As there were no sequence information of the caprine SST and SSTR1 genes, we explored their DNA sequence and genomic organizations. The caprine SST gene is organized in two exons and is transcribed into an mRNA containing 351 bp of sequence coding for a protein of 116 amino acids. Its protein sequences showed substantial similarity (97–99%) to its respective orthologs from cattle, human and mouse. We also cloned and sequenced a 1.2 kb DNA fragment which contained the major part of the coding region and 3′ UTR of the caprine SSTR1 gene. We then detected the polymorphisms in these determined sequences by PCR-SSCP and DNA sequencing methods in 459 goats from four breeds. Four SNPs (GU014693:g.647T>C, GU014693:g.844A>C, GU014693:g.970T>C, GU014693:g.1039T>A), segregating as two haplotypes (T-A-T-T and C-C-C-A), were identified in intron 1 of the caprine SST gene and showed the associations to body length and body height (P < 0.05). Two SNPs (GU014695:g.801 C>T, GU014695:g.948 C>T) were identified in the caprine SSTR1 gene. Significant associations between the three genotypes of GU014695:801 C>T and body length, body height, and chest circumference was observed (P < 0.05). These results suggest that the caprine SST and SSTR1 genes are strong candidate genes that influence growth traits in goat.


Goat SST gene SSTR1 gene SSCP SNP Association analysis 



This work was supported by the National “863” Program of the P.R. China (No. 2008AA10Z138), Natural Science Foundation of Jiangsu Province (No. BK2008120), the “13115” Sci-Tech Innovation Program of Shaanxi Province (2008ZDKG-11), Research Fund for the Doctor Program of Higher Education of China (No. 20080712001), Natural science fund for colleges and universities in Jiangsu Province (09KJD180002), Natural Science Foundation of Xuzhou Normal University (07XLA08; KY2007019), and the Young Topnotch Researcher Support Project of Northwest A&F University (No.QNGG-2009-007).

Supplementary material

11033_2010_9983_MOESM1_ESM.doc (44 kb)
Supplementary material 1 (DOC 43 kb)
11033_2010_9983_MOESM2_ESM.doc (58 kb)
Supplementary material 2 (DOC 58 kb)
11033_2010_9983_MOESM3_ESM.doc (64 kb)
Supplementary material 3 (DOC 63 kb)
11033_2010_9983_MOESM4_ESM.doc (34 kb)
Supplementary material 4 (DOC 34 kb)
11033_2010_9983_MOESM5_ESM.doc (25 kb)
Supplementary material 5 (DOC 25 kb)


  1. 1.
    Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R (1973) Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science (New York, NY) 179:77CrossRefGoogle Scholar
  2. 2.
    Finley JC, Maderdrut JL, Roger LJ, Petrusz P (1981) The immunocytochemical localization of somatostatin-containing neurons in the rat central nervous system. Neuroscience 6:2173PubMedCrossRefGoogle Scholar
  3. 3.
    Møller LN, Stidsen CE, Hartmann B, Holst JJ (2003) Somatostatin receptors. Bba-biomembranes 1616(1):1–84PubMedCrossRefGoogle Scholar
  4. 4.
    Reichlin S (1983) Somatostatin (second of two parts). New Engl J Med 309:1556–1563PubMedCrossRefGoogle Scholar
  5. 5.
    Patel YC, Reichlin S (1978) Somatostatin in hypothalamus, extrahypothalamic brain, and peripheral tissues of the rat. Endocrinology 102:523–530PubMedCrossRefGoogle Scholar
  6. 6.
    Hokfelt T, Johansson O, Efendic S, Luft R, Arimura A (1975) Are there somatostatin-containing nerves in the rat gut? Immunohistochemical evidence for a new type of peripheral nerves. Cell Mol Life Sci (CMLS) 31:852–854CrossRefGoogle Scholar
  7. 7.
    Patel YC (1999) Somatostatin and its receptor family. Front Neuroendocrin 20:157–198CrossRefGoogle Scholar
  8. 8.
    Luque RM, Gahete MD, Hochgeschwender U, Kineman RD (2006) Evidence that endogenous SST inhibits ACTH and ghrelin expression by independent pathways. Am J Physiol Endocrinol Metab 291:E395PubMedCrossRefGoogle Scholar
  9. 9.
    Colturi TJ, Unger RH, Feldman M (1984) Role of circulating somatostatin in regulation of gastric acid secretion, gastrin release, and islet cell function. Studies in healthy subjects and duodenal ulcer patients. J Clin Invest 74:417PubMedCrossRefGoogle Scholar
  10. 10.
    Lloyd KC, Amirmoazzami S, Friedik F, Chew P, Walsh JH (1997) Somatostatin inhibits gastrin release and acid secretion by activating sst2 in dogs. Am J Physiol 272:1481–1488Google Scholar
  11. 11.
    Schusdziarra V (1988) Physiological significance of gastrointestinal somatostatin. Horm Res 29:75–78PubMedCrossRefGoogle Scholar
  12. 12.
    Tulassay Z (1998) Somatostatin and the gastrointestinal tract. Scand J Gastroenterol 33:115–121CrossRefGoogle Scholar
  13. 13.
    Strowski MZ, Parmar RM, Blake AD, Schaeffer JM (2000) Somatostatin inhibits insulin and glucagon secretion via two receptors subtypes: an in vitro study of pancreatic islets from somatostatin receptor 2 knockout mice. Endocrinology 141:111PubMedCrossRefGoogle Scholar
  14. 14.
    Akopian A, Johnson J, Gabriel R, Brecha N, Witkovsky P (2000) Somatostatin modulates voltage-gated K+ and Ca2+ currents in rod and cone photoreceptors of the salamander retina. J Neurosci 20:929PubMedGoogle Scholar
  15. 15.
    Weckbecker G, Lewis I, Albert R, Schmid HA, Hoyer D, Bruns C (2003) Opportunities in somatostatin research: biological, chemical and therapeutic aspects. Nat Rev Drug Discov 2:999–1017PubMedCrossRefGoogle Scholar
  16. 16.
    Kreienkamp HJ, Akgn E, Baumeister H, Meyerhof W, Richter D (1999) Somatostatin receptor subtype 1 modulates basal inhibition of growth hormone release in somatotrophs. Febs Lett 462:464–466PubMedCrossRefGoogle Scholar
  17. 17.
    Wang XP, Norman M, Yang J, Magnusson J, Kreienkamp HJ, Richter D, DeMayo FJ, Brunicardi FC (2006) Alterations in glucose homeostasis in SSTR1 gene-ablated mice. Mol Cell Endocrinol 247(1–2):82–90PubMedCrossRefGoogle Scholar
  18. 18.
    Mullenbach R, Lagoda PJ, Welter C (1989) An efficient salt-chloroform extraction of DNA from blood and tissues. Trends Genet 5:391PubMedGoogle Scholar
  19. 19.
    Zhang CL, Wang Y, Chen H, Lan XY, Lei CZ (2007) Enhance the efficiency of single-strand conformation polymorphism analysis by short polyacrylamide gel and modified silver staining. Anal Biochem 365:286–287PubMedCrossRefGoogle Scholar
  20. 20.
    Greenwood TA, Kelsoe JR (2003) Promoter and intronic variants affect the transcriptional regulation of the human dopamine transporter gene. Genomics 82:511–520PubMedCrossRefGoogle Scholar
  21. 21.
    Le Hir H, Nott A, Moore MJ (2003) How introns influence and enhance eukaryotic gene expression. Trends Biochem Sci 28:215–220PubMedCrossRefGoogle Scholar
  22. 22.
    Van Laere AS, Nguyen M, Braunschweig M, Nezer C, Collette C, Moreau L, Archibald AL, Haley CS, Buys N, Tally M (2003) A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig. Nature 425:832–836PubMedCrossRefGoogle Scholar
  23. 23.
    Sobrier ML, Maghnie M, Vie-Luton MP, Secco A, di Iorgi N, Lorini R, Amselem S (2006) Novel HESX1 mutations associated with a life-threatening neonatal phenotype, pituitary aplasia, but normally located posterior pituitary and no optic nerve abnormalities. J Clin Endocrinol Metab 91:4528PubMedCrossRefGoogle Scholar
  24. 24.
    Nackley AG, Shabalina SA, Tchivileva IE, Satterfield K, Korchynskyi O, Makarov SS, Maixner W, Diatchenko L (2006) Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science 314:1930PubMedCrossRefGoogle Scholar
  25. 25.
    Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM, Ambudkar SV, Gottesman MM (2007) A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 315:525PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Q. J. Jin
    • 1
  • J. J. Sun
    • 1
  • X. T. Fang
    • 1
  • C. L. Zhang
    • 1
  • L. Yang
    • 1
  • D. X. Chen
    • 1
  • X. Y. Shi
    • 1
  • Y. Du
    • 1
  • X. Y. Lan
    • 2
  • H. Chen
    • 1
  1. 1.Institute of Cellular and Molecular BiologyXuzhou Normal UniversityXuzhouPeople’s Republic of China
  2. 2.College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for AgricultureNorthwest A&F UniversityYanglingChina

Personalised recommendations