Molecular Biology Reports

, Volume 38, Issue 7, pp 4475–4482 | Cite as

Isolation and identification of a putative scent-related gene RhMYB1 from rose

  • Huijun Yan
  • Hao Zhang
  • Qigang Wang
  • Hongying Jian
  • Xianqin Qiu
  • Jihua Wang
  • Kaixue Tang


Rose fragrances play an important role in attracting pollinators and commercial value. However, some genes involved in rose floral scent metabolism are less well understood. Here, wild-type scented rose (WR) and its spontaneous non-scented mutant rose (MR) were analyzed. SPME-GC/MS analysis showed that relative content of 1-ethenyl-4-methoxy-benzene represented was significantly different between WR and MR. We have isolated an EST encoding a MYB family of transcription factor from SSH libraries of the two roses in the previous studies, and designated RhMYB1. In the study, the full-length cDNA of RhMYB1 was identified and characterized by rapid amplification of cDNA ends (RACE). The RhMYB1 full-length cDNA was 1,125 bp containing an 882 bp open reading frame, which encodes a precursor protein of 294 amino acids. Sequence alignments revealed that RhMYB1 shared high similarity with other plants R-type MYB, and RhMYB1 contained a DNA binding domain. Northern blot analysis revealed that RhMYB1 was expressed specifically in flower petal, moreover, the expression level of RhMYB1 in WR increased along with scent emission, and decreased when the scent emission decreased. It is suggested that RhMYB1 might be a putative identification of gene involved in the biosynthesis of rose scent.


Rose Scent-related gene SPME-GC/MS 1-ethenyl-4-methoxy-benzene RhMYB1 



We thank Dr. Guo-feng Liu, Huazhong Agricultural University (People’s Republic of China) for proofreading of the manuscript, and Dr. Ji-rong Xie, Chongqing University of Arts and Sciences (People’s Republic of China) for advising the work. This study was supported by ministry of agriculture project (200903020), Provincial Natural Science Foundation of Yunnan Province, People’s Republic of China (2007C0003Z) and the Natural Science Foundation of China (31060268).


  1. 1.
    Weiss EA (1997) Rosaceae. In: Weiss EA (ed) Essential oil crops. CAB International Wallingford, Oxon, UK, pp 393–416Google Scholar
  2. 2.
    Gudin S (2000) Rose: genetics and breeding. Plant Breed Rev 17:159–189Google Scholar
  3. 3.
    Bergougnoux V, Caissard JC, Jullien F, Magnard JL, Scalliet G, Cock JM, Hugueney P, Baudino S (2007) Both the adaxial and abaxial epidermal layers of the rose petal emit volatile scent compounds. Planta 226:853–866PubMedCrossRefGoogle Scholar
  4. 4.
    Guterman I, Shalit M, Menda N, Piestun D, Dafny-Yelin M, Shalev G, Bar E, Davydov O, Ovadis M, Emanuel M, Wang J, Adam Z, Pichersky E, Lewinsohn E, Zamir D, Vainstein A, Weiss D (2002) Rose scent: genomics approach to discovering novel floral fragrance-related genes. Plant Cell 14:2325–2338PubMedCrossRefGoogle Scholar
  5. 5.
    Channelière S, Rivière S, Scalliet G, Szecsi J, Jullien F, Dolle C, Vergne P, Dumas C, Bendahmane M, Hugueney P, Cock JM (2002) Analysis of gene expression in rose petals using expressed sequence tags. FEBS Lett 515:35–38PubMedCrossRefGoogle Scholar
  6. 6.
    Flament I, Debonneville C, Furrer A (1993) Volatile constituents of roses: characterization of cultivars based on the headspace analysis of living flower emissions. In: Teranishi R, Buttery RG, Sugisawa H (eds) Bioactive volatile compounds from plants. American Chemical Society, Washington, DC, pp 269–281CrossRefGoogle Scholar
  7. 7.
    Scalliet G, Journot N, Jullien F, Baudino S, Magnard JL, Channelière S, Vergne P, Dumas C, Bendahmane M, Cock JM, Hugueney P (2002) Biosynthesis of the major scent components 3,5-dimethoxytoluene and 1,3,5-trimethoxybenzene by novel rose O-methyltransferases. FEBS Lett 523:113–118PubMedCrossRefGoogle Scholar
  8. 8.
    Baudino S, Caissard JC, Bergougnoux V, Jullien F, Magnard JL, Scalliet G, Cock JM, Hugueney P (2007) Production and emission of volatile compounds by petal cells. Plant Signal Behav 2:525–526PubMedCrossRefGoogle Scholar
  9. 9.
    Brunke EJ, Hammerschmidt FJ, Schmaus G (1992) Scent of roses recent results. Flavour Frag J 7:195–198CrossRefGoogle Scholar
  10. 10.
    Picone JM, Clery RA, Watanabe N, MacTavish HS, Turnbull CG (2004) Rhythmic emission of floral volatiles from Rosa damascena semperflorens cv. ‘Quatre Saisons’. Planta 219:468–478PubMedCrossRefGoogle Scholar
  11. 11.
    Dudareva N, Cseke L, Blanc VM, Pichersky E (1996) Evolution of floral scent in Clarkia: novel patterns of S-linalool synthase gene expression in the C. breweri flower. Plant Cell 8:1137–1148PubMedCrossRefGoogle Scholar
  12. 12.
    Pichersky E, Noel JP, Dudareva N (2006) Biosynthesis of plant volatiles: nature’s diversity and ingenuity. Science 311:808–811PubMedCrossRefGoogle Scholar
  13. 13.
    Vainstein A, Lewinsohn E, Weiss D (2006) An integrated genomics approach to identifying floral scent genes in rose. In: Dudareva N, Pichersky E (eds) Biology of floral scent. CRC Press–Taylor & Francis Group, Boca Raton, pp 91–102Google Scholar
  14. 14.
    Scalliet G, Piola F, Douady CJ, Réty S, Raymond O, Baudino S, Bordji K, Bendahmane M, Dumas C, Cock JM, Hugueney P (2008) Scent evolution in Chinese roses. Proc Natl Acad Sci USA 105:5927–5932PubMedCrossRefGoogle Scholar
  15. 15.
    Scalliet G, Lionnet C, Le Bechec M, Dutron L, Magnard JL, Baudino S, Bergougnoux V, Jullien F, Chambrier P, Vergne P, Dumas C, Cock JM, Hugueney P (2006) Role of petal-specific orcinol O-methyltransferases in the evolution of rose scent. Plant Physiol 140:18–29PubMedCrossRefGoogle Scholar
  16. 16.
    Shalit M, Guterman I, Volpin H, Bar E, Tamari T, Menda N, Adam Z, Zamir D, Vainstein A, Weiss D, Pichersky E, Lewinsohn E (2003) Volatile ester formation in roses. Identification of an acetyl-coenzyme A. Geraniol/Citronellol acetyltransferase in developing rose petals. Plant Physiol 131:1868–1876PubMedCrossRefGoogle Scholar
  17. 17.
    Farhi M, Lavie O, Masci T, Hendel-Rahmanim K, Weiss D, Abeliovich H, Vainstein A (2010) Identification of rose phenylacetaldehyde synthase by functional complementation in yeast. Plant Mol Biol 72:235–245PubMedCrossRefGoogle Scholar
  18. 18.
    Wei YL, Li JN, Lu J, Tang ZL, Pu DC, Chai YR (2007) Molecular cloning of Brassica napus TRANSPARENT TESTA 2 gene family encoding potential MYB regulatory proteins of proanthocyanidin biosynthesis. Mol Biol Rep 34:105–120PubMedCrossRefGoogle Scholar
  19. 19.
    Mehrtens F, Kranz H, Bednarek P, Weisshaar B (2005) The Arabidopsis transcription factor MYB12 is a flavonil-specific regulator of phenylpropanoid biosynthesis. Plant Physiol 138:1083–1096PubMedCrossRefGoogle Scholar
  20. 20.
    Verdonk JC, Haring MA, van Tunen AJ, Schuurink RC (2005) ODORANT1 regulates fragrance biosynthesis in petunia flowers. Plant Cell 17:1612–1624PubMedCrossRefGoogle Scholar
  21. 21.
    Xie JR, Liang GL, Li SF, Cheng ZQ, Tang KX, Huang XQ (2007) Identification of pink sprout mutation from ‘Gold Island’ Rose. North Hortic 11:186–188Google Scholar
  22. 22.
    Wady L, Bunte A, Pehrson C, Larsson L (2003) Use of gas chromatography-mass spectrometry/solid phase micro-extraction for the identification of MVOCs from moldy building materials. J Microbiol Methods 52:325–332PubMedCrossRefGoogle Scholar
  23. 23.
    Zhu B, Xiong AS, Peng RH, Xu J, Jin XF, Meng XR, Yao QH (2010) Over-expression of ThpI from Choristoneura fumiferana enhances tolerance to cold in Arabidopsis. Mol Biol Rep 37(2):961–966PubMedCrossRefGoogle Scholar
  24. 24.
    Xie JR, Xiong YH, Liang GL, Cheng ZQ, Tang KX, Huang XQ (2008) Identification of differentially expressed genes in fragrant rose Jinyindao with suppressive subtraction hybridization. Sci Hortic l16:318–323Google Scholar
  25. 25.
    Rabinowicz PD, Braun EL, Wolfe AD, Bowen B, Grotewold E (1999) Maize R2R3 Myb genes: sequence analysis reveals amplification in the higher plants. Genetics 153:427–444PubMedGoogle Scholar
  26. 26.
    Yi J, Derynck MR, Li X, Telmer P, Marsolais F, Dhaubhadel S (2010) A single-repeat MYB transcription factor, GmMYB176, regulates CHS8 gene expression and affects isoflavonoid biosynthesis in soybean. Plant J 62:1019–1034PubMedGoogle Scholar
  27. 27.
    van Schie CC, Haring MA, Schuurink RC (2006) Regulation of terpenoid and benzenoid production in flowers. Curr Opin Plant Biol 9:203–208PubMedCrossRefGoogle Scholar
  28. 28.
    Yokoya K, Roberts AV, Mottley J, Lewis R, Brandham PE (2000) Nuclear DNA amounts in roses. Ann Bot 85:557–561CrossRefGoogle Scholar
  29. 29.
    Ben Zvi MM, Negre-Zakharov F, Masci T, Ovadis M, Shklarman E, Ben-Meir H, Tzfira T, Dudareva N, Vainstein A (2008) Interlinking showy traits: co-engineering of scent and colour biosynthesis in flowers. Plant Biotechnol J 6:403–415PubMedCrossRefGoogle Scholar
  30. 30.
    Davuluri GR, van Tuinen A, Fraser PD, Manfredonia A, Newman R, Burgess D, Brummell DA, King SR, Palys J, Uhlig J, Bramley PM, Pennings HM, Bowler C (2005) Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat Biotechnol 23:890–895PubMedCrossRefGoogle Scholar
  31. 31.
    Hoballah ME, Gübitz T, Stuurman J, Broger L, Barone M, Mandel T, Dell’Olivo A, Arnold M, Kuhlemeier C (2007) Single gene-mediated shift in pollinator attraction in Petunia. Plant Cell 19:779–790PubMedCrossRefGoogle Scholar
  32. 32.
    Wan L, Xia X, Hong D, Yang G (2010) Molecular analysis and expression of a floral organ-specific polygalacturonase gene isolated from rapeseed (Brassica napus L). Mol Biol Rep 37(8):3851–3862. doi: 10.1007/s11033-010-0041-2 PubMedCrossRefGoogle Scholar
  33. 33.
    Zuker A, Tzfira T, Ben-Meir H, Ovadis M, Shklarman E, Itzhaki H, Forkmann G, Martens S, Neta-Sharir I, Weiss D, Vainstein A (2002) Modification of flower color and fragrance by antisense suppression of the flavanone 3-hydroxylase gene. Mol Breeding 9:33–41CrossRefGoogle Scholar
  34. 34.
    Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893–1920PubMedCrossRefGoogle Scholar
  35. 35.
    Flament I, Debonneville C, Furrer A (1993) Volatile constituents of roses: characterization of cultivars based on the headspace analysis of living flower emissions. In: Teranishi R, Buttery RG, Sugisawa H (eds) Bioactive volatile compounds from plants. American Chemical Society, Washington, DC, pp 269–281CrossRefGoogle Scholar
  36. 36.
    Blount JW, Korth KL, Masoud SA, Rasmussen S, Lamb C, Dixon RA (2000) Altering expression of cinnamic acid 4-hydroxylase in transgenic plants provides evidence for a feedback loop at the entry point into the phenylpropanoid pathway. Plant Physiol 122:107–116PubMedCrossRefGoogle Scholar
  37. 37.
    Schuurink RC, Haring MA, Clark DG (2006) Regulation of volatile benzenoid biosynthesis in petunia flowers. Trends Plant Sci 11:20–25PubMedCrossRefGoogle Scholar
  38. 38.
    Hendel-Rahmanim K, Masci T, Vainstein A, Weiss D (2007) Diurnal regulation of scent emission in rose flowers. Planta 226:1491–1499PubMedCrossRefGoogle Scholar
  39. 39.
    Lavid N, Wang J, Shalit M, Guterman I, Bar E, Beuerle T, Menda N, Shafir S, Zamir D, Adam Z, Vainstein A, Weiss D, Pichersky E, Lewinsohn E (2002) O-methyltransferases involved in the biosynthesis of volatile phenolic derivatives in rose petals. Plant Physiol 129:1899–1907PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Huijun Yan
    • 1
    • 2
  • Hao Zhang
    • 1
    • 2
  • Qigang Wang
    • 1
    • 2
  • Hongying Jian
    • 1
    • 2
  • Xianqin Qiu
    • 1
    • 2
  • Jihua Wang
    • 1
    • 2
  • Kaixue Tang
    • 1
    • 2
  1. 1.Flower Research Institute of Yunnan Academy of Agricultural SciencesKunmingPeople’s Republic of China
  2. 2.Yunnan Flower Breeding Key LaboratoryKunmingPeople’s Republic of China

Personalised recommendations