Molecular Biology Reports

, Volume 38, Issue 6, pp 4185–4192 | Cite as

The investigation of the interaction between ribavirin and bovine serum albumin by spectroscopic methods

  • Xing-Jia Guo
  • Ai-Jun Hao
  • Xiao-Wei Han
  • Ping-Li Kang
  • Yu-Chun Jiang
  • Xiang-Jun Zhang


The interaction between ribavirin (RIB) with bovine serum albumin (BSA) has been investigated by fluorescence quenching technique in combination with UV–vis absorption and circular dichroism (CD) spectroscopies under the simulative physiological conditions. The quenching of BSA fluorescence by RIB was found to be a result of the formation of RIB–BSA complex. The binding constants and the number of binding sites were calculated at three different temperatures. The values of thermodynamic parameters ∆H, ∆S, ∆G at different temperatures indicate that hydrophobic and hydrogen bonds played important roles for RIB–BSA association. The binding distance r was obtained according to the theory of FÖrster’s non–radiation energy transfer. The displacement experiments was performed for identifying the location of the binding site of RIB on BSA. The effects of common ions on the binding constant of RIB and BSA were also examined. Finally, the conformational changes of BSA in the presence of RIB were also analyzed by CD spectra and Synchronous fluorescence spectra.


Ribavirin Bovine serum Albumin Fluorescence quenching Circular Dichroism Binding site 



We gratefully acknowledge financial support of Liaoning Natural Science Foundation (Grant no: 20102087).


  1. 1.
    Loregian Arianna, Scarpa MariaCristina, Pagni Silvana (2007) Measurement of ribavirin and evaluation of its stability in human plasma by high-performance liquid chromatography with UV detection. J Chromatogr B 856:358–364. doi: 10.1016/j.jchromb.2007.05.039 CrossRefGoogle Scholar
  2. 2.
    Olson RE, Christ DD (1996) Plasma protein binding of drugs. Annu Rep Med Chem 31:327–337CrossRefGoogle Scholar
  3. 3.
    Kandagal PB, Ashoka S, Seetharamappa J, Shaikh SMT, Jadegoud Y, Ijare OB (2006) Study of the interaction of an anticancer drug with human and bovine serum albumin: spectroscopic approach. J Pharmaceut Biomed 41:393–399. doi: 10.1016/j.jpba.2005.11.037 CrossRefGoogle Scholar
  4. 4.
    Yongnian Ni, Liu Genlan, Kokot Serge (2008) Fluorescence spectrometric study on the interactions of Isoprocarb and sodium 2-isopropylphenate with bovine serum albumin. Talanta 76:513–521. doi: 10.1016/j.talanta.2008.03.037 CrossRefGoogle Scholar
  5. 5.
    Timerbaev AR, Hartinger CG, Aleksenko SS (2006) Interactions of antitumor metallodrugs with serum proteins: advances in characterization using modern analytical methodology. Chem Rev 106:2224–2248. doi: 10.1021/cr040704h PubMedCrossRefGoogle Scholar
  6. 6.
    Gentili PL, Ortica F, Favaro G (2008) Supramolecular interaction of a spirooxazine with amino acids. J Phys Chem B 112:16793–16801. doi: 10.1016/j.cplett.2007.06.132 PubMedCrossRefGoogle Scholar
  7. 7.
    Leslie C, Scott CJW, Cair FI (1992) Principal alterations to drug kinetics and dynamics in the elderly. Med Lab Sci 49:319–325PubMedGoogle Scholar
  8. 8.
    Anbazhagan V, Renganathan R (2008) Study on the binding of 2,3-diazabicyclo[2.2.2]oct-2-ene with bovine serum albumin by fluorescence spectroscopy. J Lumin 128:1454–1458. doi: 10.1016/j.jlumin.2008.02.004 CrossRefGoogle Scholar
  9. 9.
    He XM, Carter DC (1992) Atomic structure and chemistry of human serum albumin. Nature 358:209–215. doi: 10.1038/358209a0 PubMedCrossRefGoogle Scholar
  10. 10.
    Sjoholm I, Ekman B, Kober A, Ljungstedt–Pahlman I, Seiving B, Sjodin T (1979) Binding of drugs to human serum albumin: XI. The specificity of three binding sites as studied with albumin immobilized in microparticles. Mol Pharmacol 16:767–777PubMedGoogle Scholar
  11. 11.
    Yue YY, Zhang YH, Zhou L, Qin J, Chen XG (2008) In vitro study on the binding of herbicide glyphosate to human serum albumin by optical spectroscopy and molecular modeling. J Photochem Photobiol B 90:26–32. doi: 10.1016/j.jphotobiol.2007.10.003 PubMedGoogle Scholar
  12. 12.
    Bhattacharyya M, Chaudhuri U, Poddar RK (1990) Evidence for cooperative binding of chlorpromazine with hemoglobin: equilibrium dialysis, fluorescence quenching and oxygen release study. Biochem Biophys Res Commun 167:1146–1153. doi: 10.1016/0006-291X(90)90643-2 PubMedCrossRefGoogle Scholar
  13. 13.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New YorkCrossRefGoogle Scholar
  14. 14.
    Wang YQ, Tang BP, Zhang HM (2009) Studies on toprid and human serum albumin: spectroscopic approach. J Photochem Photobiol B 94:183–190. doi: 10.1016/j.jphotobiol.2008.11.013 PubMedCrossRefGoogle Scholar
  15. 15.
    Guo XJ, Zhang L, Sun XD, Han XW, Guo C, Kang PL (2009) Spectroscopic studies on the interaction between sodium ozagrel and bovine serum albumin. J Mol Struct 928:114–120. doi: 10.1016/j.molstruc.2009.03.023 CrossRefGoogle Scholar
  16. 16.
    Pan XR, Liu RT, Qin PF, Wang L, Zhao XC (2010) Spectroscopic studies on the interaction of acid yellow with bovine serum albumin. J Lumin 130:611–617. doi: 10.1016/j.jlumin.2009.11.004 CrossRefGoogle Scholar
  17. 17.
    Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20:3096–3102. doi: 10.1021/bi00514a017 PubMedCrossRefGoogle Scholar
  18. 18.
    Förster T, Sinanoglu O (eds) (1966) Modern Quantum Chemistry, vol 3. Academic Press, New YorkGoogle Scholar
  19. 19.
    Valeur B, Brochon JC (1999) New trends in fluorescence spectroscopy, 6th edn. Springer Press, BerlinGoogle Scholar
  20. 20.
    Ni YN, Zhang X, Kokot S (2009) Spectrometric and voltammetric studies of the interaction between quercetin and bovine serum albumin using warfarin as site marker with the aid of chemometrics. Spectrochim Acta A 71:1865–1872. doi: 10.1016/j.saa.2008.07.004 CrossRefGoogle Scholar
  21. 21.
    Sudlow G, Birkett DJ, Wade DN (1976) Further characterization of specific drug binding sites on human serum albumin. Mol Pharmacol 12:1052–1061PubMedGoogle Scholar
  22. 22.
    Wang N, Ye L, Yan FF, Xu R (2008) Spectroscopic studies on the interaction of azelnidipine with bovine serum albumin. Int J Pharm 351:55–60. doi: 10.1016/j.ijpharm.2007.09.016 PubMedCrossRefGoogle Scholar
  23. 23.
    Gao H, Lei LD, Liu JQ, Kong Q, Chen XG, Hu ZD (2004) The study on the interaction between human serum albumin and a new reagent with antitumour activity by spectrophotometric methods. J Photochem Photobiol Part A 167:213–221. doi: 10.1016/j.jphotochem.2004.05.017 CrossRefGoogle Scholar
  24. 24.
    Zahng YZ, Dai J, Zhang XP, Yang X, Liu Y (2008) Studies of the interaction between Sudan I and bovine serum albumin by spectroscopic methods. J Mol Struct 888:152–159. doi: 10.1016/j.molstruc.2007.11.043 CrossRefGoogle Scholar
  25. 25.
    Brustein EA, Vedenkina NS, Irkova MN (1973) Fluorescence studies on PAMAM dendrimers interactions with bovine serum albumin. Photochem Photobiol 18:263–279. doi: 10.1016/S1567-5394(01)00170-0 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Xing-Jia Guo
    • 1
  • Ai-Jun Hao
    • 2
  • Xiao-Wei Han
    • 1
  • Ping-Li Kang
    • 1
  • Yu-Chun Jiang
    • 1
  • Xiang-Jun Zhang
    • 1
  1. 1.College of ChemistryLiaoning UniversityShenyangPeople’s Republic of China
  2. 2.School of Pharmaceutical ScienceLiaoning UniversityShenyangPeople’s Republic of China

Personalised recommendations