Molecular Biology Reports

, Volume 38, Issue 6, pp 3911–3920 | Cite as

Characterization and expression analysis of the myeloid differentiation factor 88 (MyD88) in rock bream Oplegnathus fasciatus

  • Ilson Whang
  • Youngdeuk Lee
  • Hyowon Kim
  • Sung-Ju Jung
  • Myung-Joo Oh
  • Cheol Young Choi
  • Woo Song Lee
  • Se-Jae Kim
  • Jehee Lee


Myeloid differentiation factor 88 (MyD88) is a universal adaptor protein able to activate nuclear factor-kappa B (NF-κB) through interactions with interleukin-1 receptor (IL-1R) and the Toll-like receptors (TLRs), with the exception of TLR3. Here, we describe the identification of MyD88 from the rock bream fish Oplegnathus fasciatus and its characterization based on GS-FLX™ sequencing. The cDNA of rock bream MyD88 was found to be composed of 1626 bp, with an 867 bp open reading frame that encodes 288 amino acids. The deduced amino acid sequence of MyD88 possessed both a conserved death domain at the amino terminus and a typical Toll-IL-1 receptor (TIR) domain at the carboxyl terminus, similar to that found in other fishes, amphibians, avians, mammals and invertebrates. The mRNA expression pattern of MyD88 in healthy and bacterially challenged rock bream were examined using quantitative real-time polymerase chain reaction (qRT-PCR). MyD88 transcripts were found to be strongly expressed in blood, gill, liver, spleen, head kidney and kidney, moderately expressed in skin, brain and intestine, and weakly expressed in muscle. Expression levels of MyD88 in blood, spleen and head kidney were dramatically up-regulated upon exposure to LPS and the Gram-negative bacteria Edwardsiella tarda, suggesting that MyD88 plays an important role in rock bream defenses against bacterial infection.


Oplegnathus fasciatus MyD88 Innate immunity LPS Edwardsiella tarda Gene expression 



This research was supported by a grant from the National Fisheries Research and Development Institute (NFRDI, RP-2010-BT-030), Republic of Korea.


  1. 1.
    Magnadóttir B (2006) Innate immunity of fish (overview). Fish Shellfish Immunol 20:137–151PubMedCrossRefGoogle Scholar
  2. 2.
    Fearon DT (1977) Seeking wisdom in innate immunity. Nature 388:323–324CrossRefGoogle Scholar
  3. 3.
    Medzhitov R, Janeway CA Jr (2002) Decoding the patterns of self and nonself by the innate immune system. Science 296:298–300PubMedCrossRefGoogle Scholar
  4. 4.
    Armant MA, Fenton MJ (2002) Toll-like receptors: a family of pattern-recognition receptors in mammals. Genome Biol 3:3011.1–3011.6CrossRefGoogle Scholar
  5. 5.
    Beutler B (2005) The Toll-like receptors: analysis by forward genetic methods. Immunogenetics 57:385–392PubMedCrossRefGoogle Scholar
  6. 6.
    Bilak H, Tauszig-Delamasure S, Imler JL (2003) Toll and Toll-like receptors in Drosophila. Biochem Soc Trans 31:648–651PubMedCrossRefGoogle Scholar
  7. 7.
    Krishnan J, Selvarajoo K, Tsuchiya M, Lee G, Choi S (2007) Toll-like receptor signal transduction. Exp Mol Med 39:421–438PubMedGoogle Scholar
  8. 8.
    Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H et al (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408:740–745PubMedCrossRefGoogle Scholar
  9. 9.
    Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413:732–738PubMedCrossRefGoogle Scholar
  10. 10.
    Lund JM, Alexopoulou L, Sato A, Karow M, Adams NC, Gale NW et al (2004) Recognition of single stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sci USA 101:5598–5603PubMedCrossRefGoogle Scholar
  11. 11.
    Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303:1529–1531PubMedCrossRefGoogle Scholar
  12. 12.
    Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S et al (2004) Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303:1526–1529PubMedCrossRefGoogle Scholar
  13. 13.
    Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T et al (1999) Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11:443–451PubMedCrossRefGoogle Scholar
  14. 14.
    Takada H, Uehara A (2006) Enhancement of TLR-mediated innate immune responses by peptidoglycans through NOD signaling. Curr Pharm Des 12(32):4163–4172PubMedCrossRefGoogle Scholar
  15. 15.
    Takeuchi O, Kaufmann A, Grote K, Kawai T, Hoshino K, Morr M et al (2000) Cutting edge: preferentially the R-stereoisomer of the myoplasma lipopeptide macrophage-activating lipopeptide-2 activates immune cells through a toll-like receptor 2- and MyD88-dependent signaling pathway. J Immunol 164:554–557PubMedGoogle Scholar
  16. 16.
    Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB et al (2000) The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci USA 97:13766–13771PubMedCrossRefGoogle Scholar
  17. 17.
    Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK et al (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410:1099–1103PubMedCrossRefGoogle Scholar
  18. 18.
    Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C, Ghosh C et al (1998) MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol Cell 2:253–258PubMedCrossRefGoogle Scholar
  19. 19.
    Janeway CA Jr, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216PubMedCrossRefGoogle Scholar
  20. 20.
    Kawai T, Takeuchi O, Fujita T, Inoue J, Muhlaradt PF, Sato S et al (2001) Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J Immunol 167:5887–5894PubMedGoogle Scholar
  21. 21.
    Lord KA, Hoffman-Liebermann B, Liebermann DA (1990) Nucleotide sequence and expression of a cDNA encoding MyD88, a novel myeloid differentiation primary response gene induced by IL6. Oncogene 5(7):1095–1097PubMedGoogle Scholar
  22. 22.
    Wesche H, Henzel WJ, Shillinglaw W, Li S, Cao Z (1997) MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7:837–847PubMedCrossRefGoogle Scholar
  23. 23.
    Bonnert TP, Garka KE, Parnet P, Sonoda G, Testa JR, Sims JE (1997) The cloning and characterization of human MyD88: a member of an IL-1 receptor related family. FEBS Lett 402:81–84PubMedCrossRefGoogle Scholar
  24. 24.
    Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS et al (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci USA 99:16899–16903PubMedCrossRefGoogle Scholar
  25. 25.
    Prothmann C, Armstrong NJ, Rupp RA (2000) The Toll/IL-1 receptor binding protein MyD88 is required for Xenopus axis formation. Mech Dev 97:85–92PubMedCrossRefGoogle Scholar
  26. 26.
    Wheaton S, Lambourne MD, Sarson AJ, Brisbin JT, Mayameei A, Sharif S (2007) Molecular cloning and expression analysis of chicken MyD88 and TRIF genes. DNA Seq 18:480–486PubMedGoogle Scholar
  27. 27.
    van der Sar AM, Stockhammer OW, Van der Laan C, Spaink HP, Bitter W, Meijer AH (2006) MyD88 innate immune function in a zebrafish embryo infection model. Infect Immun 74:2436–2441PubMedCrossRefGoogle Scholar
  28. 28.
    Qiu L, Song L, Yu Y, Su W, Ni D, Zhang Q (2007) Identification and characterization of a myeloid differentiation factor 88 (MyD88) cDNA from Zhikong scallop Chlamys farreri. Fish Shellfish Immunol 23:614–623PubMedCrossRefGoogle Scholar
  29. 29.
    Tauszig-Delamasure S, Bilak H, Capovilla M, Hoffmann JA, Imler JL (2001) Drosophila MyD88 is required for the response to fungal and Gram-positive bacterial infection. Nat Immunol 3:91–97PubMedCrossRefGoogle Scholar
  30. 30.
    Meijer AH, Krens SFG, Rodriguez IAM, He S, Bitter W, Snaar-Jagalska BE et al (2004) Expression analysis of the Toll-like receptor and TIR domain adaptor families of zebrafish. Mol Immunol 40:773–783PubMedCrossRefGoogle Scholar
  31. 31.
    Takano T, Kondo H, Hirono I, Saito-Taki T, Endo M, Aoki T (2006) Identification and characterization of a myeloid differentiation factor 88 (MyD88) cDNA and gene in Japanese flounder Paralichthys olivaceus. Dev Comp Immunol 30:807–816PubMedCrossRefGoogle Scholar
  32. 32.
    Yao CL, Kong P, Wang ZY, Ji PF, Liu XD, Cai MY et al (2009) Molecular cloning and expression of MyD88 in large croaker Pseudosciaena crocea. Fish Shellfish Immunol 26:249–255PubMedCrossRefGoogle Scholar
  33. 33.
    Rebl A, Goldammer T, Fischer U, Köllner B, Seyfert HM (2009) Characterization of two key molecules of teleost innate immunity from rainbow trout (Oncorhynchus mykiss): MyD88 and SAA. Vet Immunol Immunopathol 131:122–126PubMedCrossRefGoogle Scholar
  34. 34.
    Zenke K, Kim KH (2008) Functional characterization of the RNase III gene of rock bream iridovirus. Arch Virol 153:1651–1656PubMedCrossRefGoogle Scholar
  35. 35.
    Park SL (2009) Disease control in Korean aquaculture. Fish Pathol 44:19–23CrossRefGoogle Scholar
  36. 36.
    Droege M, Hill B (2008) The genome sequencer FLX™ system-longer reads, more applications, straight forward bioinformatics and more complete data sets. J Biotechnol 136:3–10PubMedCrossRefGoogle Scholar
  37. 37.
    Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599PubMedCrossRefGoogle Scholar
  38. 38.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408PubMedCrossRefGoogle Scholar
  39. 39.
    Shaw G, Kamen R (1986) A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46:659–667PubMedCrossRefGoogle Scholar
  40. 40.
    Han J, Brown T, Beutler B (1990) Endotoxin-responsive sequences control cachectin/tumor necrosis factor biosynthesis at the translational level. J Exp Med 171:465–475PubMedCrossRefGoogle Scholar
  41. 41.
    Lee EY, Park HH, Kim YT, Choi TJ (2001) Cloning and sequence analysis of the interleukin-8 gene from flounder (Paralichthys olivaceus). Gene 274:237–243PubMedCrossRefGoogle Scholar
  42. 42.
    Laing KJ, Zou JJ, Wang T, Bols N, Hirono I, Aoki T et al (2002) Identification and analysis of an interleukin 8-like molecule in rainbow trout Oncorhynchus mykiss. Dev Comp Immunol 26:433–444PubMedCrossRefGoogle Scholar
  43. 43.
    Weber CH, Vincenz C (2001) The death domain superfamily: a tale of two interfaces? Trends Biochem Sci 26:475–481PubMedCrossRefGoogle Scholar
  44. 44.
    Hofmann K, Tschopp J (1995) The death domain motif found in FAS (APO-1) and TNF receptor is present in proteins involved in apoptosis and axonal guidance. FEBS Lett 371:321–323PubMedCrossRefGoogle Scholar
  45. 45.
    Itoh N, Nagata S (1993) A novel protein domain required for apoptosis. Mutational analysis of human Fas antigen. J Biol Chem 268:10932–10937PubMedGoogle Scholar
  46. 46.
    Xu Y, Tao X, Shen B, Horn T, Medzhitov R, Manley JL et al (2000) Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature 408:111–115PubMedCrossRefGoogle Scholar
  47. 47.
    Janssens S, Burns K, Tschopp J, Beyaert R (2002) Regulation of interleukin-1 and lipopolysaccharide-induced NF-κB activation by alternative splicing of MyD88. Curr Biol 12:467–471PubMedCrossRefGoogle Scholar
  48. 48.
    Burns K, Janssens S, Brissoni B, Olivos N, Beyaert R, Tschopp J (2003) Inhibition of interleukin 1 receptor/toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J Exp Med 197:263–268PubMedCrossRefGoogle Scholar
  49. 49.
    Jault C, Pichon L, Chluba J (2004) Toll-like receptor gene family and TIR-domain adapters in Danio rerio. Mol Immunol 40:759–771PubMedCrossRefGoogle Scholar
  50. 50.
    Sepulcre MP, Alcaraz-Pérez F, López Muñoz A, Roca FJ, Meseguer J, Cayuela ML et al (2009) Evolution of lipopolysaccaride (LPS) recognition and signaling: Fish TLR4 does not recognize LPS and negatively regulates NF-kB activation. J Immunol 15:1836–1845CrossRefGoogle Scholar
  51. 51.
    Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD et al (2005) The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci USA 102:9577–9582PubMedCrossRefGoogle Scholar
  52. 52.
    Iliev DB, Roach JC, Mackenzie S, Planas JV, Goeta FW (2005) Endotoxin recognition: in fish or not in fish? FEBS Lett 579:6519–6528PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Ilson Whang
    • 1
  • Youngdeuk Lee
    • 2
  • Hyowon Kim
    • 2
  • Sung-Ju Jung
    • 3
  • Myung-Joo Oh
    • 3
  • Cheol Young Choi
    • 4
  • Woo Song Lee
    • 5
  • Se-Jae Kim
    • 1
  • Jehee Lee
    • 2
    • 6
  1. 1.Department of Life Sciences, College of Natural SciencesJeju National UniversityJeju-siRepublic of Korea
  2. 2.Department of Marine Life Sciences, School of Marine Biomedical SciencesJeju National UniversityJeju-siRepublic of Korea
  3. 3.Department of Aqualife MedicineChonnam National UniversityChonnamRepublic of Korea
  4. 4.Division of Marine Environment and BioscienceKorea Maritime UniversityBusanRepublic of Korea
  5. 5.Bioindustry Technology Research Center and AI Control Material Research CenterKorea Research Institute of Bioscience and BiotechnologyJeongeupRepublic of Korea
  6. 6.Marine and Environmental InstituteJeju National UniversityJeju-siRepublic of Korea

Personalised recommendations