Molecular Biology Reports

, Volume 38, Issue 6, pp 3635–3642 | Cite as

Increased mitochondrial DNA damage and decreased base excision repair in the auditory cortex of d-galactose-induced aging rats

  • Bei Chen
  • Yi Zhong
  • Wei Peng
  • Yu Sun
  • Yu-juan Hu
  • Yang Yang
  • Wei-jia Kong


Aging has been associated with mitochondrial DNA (mtDNA) common deletion (CD). Age changes in the central auditory system are well known to affect speech perception. Base excision repair (BER) is the major type of DNA repair in mitochondria. The current study was designed to investigate potential causative mechanisms of central presbycusis by using a rat mimetic aging model induced by subcutaneous administration of d-galactose (d-gal). Quantitative real-time PCR and Western blotting analyses were performed to identify the mtDNA 4834 bp deletion and selected mitochondrial DNA repair enzymes, DNA polymerase γ (pol γ) and 8-oxoguanine DNA glycosylase (OGG1). Cell apoptosis in the auditory cortex was detected using terminal deoxynucleotidyltransferase mediated UTP nick-end labeling (TUNEL). Our data showed that mtDNA 4834 bp deletion and TUNEL-positive cells were significantly increased and the expression of pol γ and OGG1 were remarkably down-regulated in the auditory cortex in d-gal-treated rats compared to control rats. During aging, increased mtDNA damage likely results from decreased DNA repair capacity in the auditory cortex. DNA repair enzymes such as pol γ and OGG1 may provide novel pharmacological targets to promote DNA repair and rescue the central auditory system in patients with degenerative diseases.


8-Oxoguanine Aging Oxidative damage DNA repair 



Mitochondrial base excision repair


Age-related hearing loss




Mitochondrial DNA


Common deletion


Auditory cortex


8-Oxoguanine DNA glycosylase

DNA pol γ

DNA polymerase γ


Terminal deoxynucleotidyltransferase-mediated UTP nick-end labeling



This work was supported by grant from a National Nature Science Foundation of China (No. 30730094).


  1. 1.
    Gates GA, Mills JH (2005) Presbycusis. Lancet 366:1111–1120. doi: 10.1016/S0140-6736(05)67423-5 PubMedCrossRefGoogle Scholar
  2. 2.
    Harman D (2001) Aging: overview. Ann NY Acad Sci 928:1–21PubMedCrossRefGoogle Scholar
  3. 3.
    Jaruga P, Dizdaroglu M (1996) Repair of products of oxidative DNA base damage in human cells. Nucleic Acids Res 24:1389–1394. doi: 10.1093/nar/24.8.1389 PubMedCrossRefGoogle Scholar
  4. 4.
    Markaryan A, Nelson EG, Hinojosa R (2009) Quantification of the mitochondrial DNA common deletion in presbycusis. Laryngoscope 119:1184–1189. doi: 10.1002/lary.20218 PubMedCrossRefGoogle Scholar
  5. 5.
    Meissner C, Bruse P, Mohamed SA, Schulz A, Warnk H, Storm T, Oehmichen M (2008) The 4977 bp deletion of mitochondrial DNA in human skeletal muscle, heart and different areas of the brain: a useful biomarker or more? Exp Gerontol 43:645–652. doi: 10.1016/j.exger.2008.03.004 PubMedCrossRefGoogle Scholar
  6. 6.
    Ross OA, Hyland P, Curran MD, Mcllhatton BP, Wikby A, Johansson B, Tompa A, Pawelec G, Barnett CR, Middleton D, Barnett YA (2002) Mitochondrial DNA damage in lymphocytes: a role in immunosenescence? Exp Gerontol 37:329–340. doi: 10.1016/S0531-5565(01)00200-5 PubMedCrossRefGoogle Scholar
  7. 7.
    Ho SC, Liu JH, Wu ReY (2003) Establishment of the mimetic aging effect in mice caused by d-galactose. Biogerontology 4:15–18PubMedCrossRefGoogle Scholar
  8. 8.
    Wang Z (1999) Physiologic and biochemical changes of mimetic aging induced d-galactose in rats. Lab Anim Sci Admin 16:23–25Google Scholar
  9. 9.
    Song X, Bao M, Li D, Li YM (1999) Advanced glycation in d-galactose induced mouse aging model. Mech Aging Dev 108:239–251PubMedCrossRefGoogle Scholar
  10. 10.
    Cui X, Wang LN, Zuo PP, Han ZT, Fang ZY, Li WB, Liu JK (2004) d-Galactose-caused life shortening in Drosophila melanogaster and Musca domestica is associated with oxidative stress. Biogerontology 5:317–325PubMedCrossRefGoogle Scholar
  11. 11.
    Kong WJ, Hu YJ, Wang Q, Wang Y, Han YC, Cheng HM, Kong W, Guan MX (2006) The effect of the mtDNA4834 deletion on hearing. BBRC 344:425–430PubMedGoogle Scholar
  12. 12.
    Kong WJ, Wang Y, Wang Q, Hu YJ, Han YC, Liu J (2006) The relation between d-galactose injection and mitochondrial. DNA 4834 bp deletion mutation. Exp Gerontol 41:628–634. doi: 10.1016/j.exger.2006.04.008 PubMedCrossRefGoogle Scholar
  13. 13.
    Chen JH, Hales CN, Ozanne SE (2007) DNA damage, cellular senescence and organismal ageing: causal or correlative? Nucleic Acids Res 35:7417–7428. doi: 10.1093/nar/gkm681 PubMedCrossRefGoogle Scholar
  14. 14.
    Thorslund T, Sunesen M, Bohr VA, Stevnsner T (2002) Repair of 8-oxoG is slower in endogenous nuclear genes than in mitochondrial DNA and is without strand bias. DNA Repair 1:261–273. doi: 10.1016/S1568-7864(02)00003-4 PubMedCrossRefGoogle Scholar
  15. 15.
    Gates GA, Feeney MP, Mills D (2008) Cross-sectional age-changes of hearing in the elderly. Ear Hear 29:865–867. doi: 10.1097/AUD.0b013e318181adb5 PubMedCrossRefGoogle Scholar
  16. 16.
    Markaryan A, Nelson EG, Hinojosa R (2008) Detection of mitochondrial DNA deletions in the cochlea and its structural elements from archival human temporal bone tissue. Mutat Res 640:38–45. doi: 10.1016/j.mrfmmm.2007.12.007 PubMedGoogle Scholar
  17. 17.
    Schuknecht HF, Gacek MR (1993) Cochlear pathology in presbycusis. Ann Otol Rhinol Laryngol 102:1–16PubMedGoogle Scholar
  18. 18.
    Spicer SS, Schulte BA (2002) Spiral ligament pathology in quiet-aged gerbils. Hear Res 172:172–185. doi: 10.1016/S0378-5955(02)00581-6 PubMedCrossRefGoogle Scholar
  19. 19.
    Chen CF, Lang SY, Zuo PP, Yang N, Wang XQ, Xia C (2006) Effects of d-galactose on the expression of hippocampal peripheral-type benzodiazepine receptor and spatial memory performances in rats. Psychoneuroendocrinology 31:805–811. doi: 10.1016/j.psyneuen.2006.03.004 PubMedCrossRefGoogle Scholar
  20. 20.
    Cui X, Zuo PP, Zhang Q, Li XK, Hu YZ, Long JG, Pcker L, Liu JK (2006) Chronic systemic d-galactose exposure induces memory loss, neurodegeneration, and oxidative damage in mice: protective effects of R-alipoic acid. J Neurosci Res 83:1584–1590. doi: 10.1002/jnr.20845 PubMedCrossRefGoogle Scholar
  21. 21.
    Nicklas JA, Brooks EM, Hunter TC, Single R, Branda RF (2004) Development of a quantitative PCR (TaqMan) assay for relative mitochondrial DNA copy number and the common mitochondrial DNA deletion in the rat. Environ Mol Mutagen 44:313–320. doi: 10.1002/em.20050 PubMedCrossRefGoogle Scholar
  22. 22.
    Cui YL, Holt AG, Lomax CA, Altschuler RA (2007) Deafness associated changes in two-pore domain potassium channels in the rat inferior colliculus. Neuroscience 149:421–433. doi: 10.1016/j.neuroscience.2007.05.054 PubMedCrossRefGoogle Scholar
  23. 23.
    Lee HC, Pang CY, Hsu HS, Wei YH (1994) Differential accumulations of 4,977 bp deletion in mitochondrial DNA of various tissues in human ageing. Biochim Biophys Acta 1226:37–43PubMedGoogle Scholar
  24. 24.
    Mohamed SA, Hanke T, Erasmi AW, Bechtel MJ, Scharfschwerdt M, Meissner C, Sievers HH, Gosslau A (2006) Mitochondrial DNA deletions and the aging heart. Exp Gerontol 41:508–517. doi: 10.1016/j.exger.2006.03.014 PubMedCrossRefGoogle Scholar
  25. 25.
    Rossignol R, Faustin B, Rocher C, Malgat M, Mazat JP, Letellier T (2003) Mitochondrial threshold effects. Biochem J 370:751–762. doi: 10.1042/BJ20021594 PubMedCrossRefGoogle Scholar
  26. 26.
    Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, Jaros E, Hersheson JS, Betts J, Klopstock T, Taylor RW, Turnbull DM (2006) High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 38:515–517. doi: 10.1038/ng1769 PubMedCrossRefGoogle Scholar
  27. 27.
    de Souza-Pinto NC, Eide L, Hogue BA, Thybo T, Stevnsner T, Klungland A, Bohr VA (2001) Repair of 8-oxodeoxyguanosine lesions in mitochondrial DNA depends on the oxoguanine DNA glycosylase (OGG1) gene and 8-oxoguanine accumulates in the mitochondrial DNA of OGG1-defective mice. Cancer Res 61:5378–5381PubMedGoogle Scholar
  28. 28.
    de Souza-Pinto NC, Hogue BA, Bohr VA (2001) DNA repair and aging in mouse liver: 8-oxoG glycosylase activity increase in mitochondrial but not in nuclear extracts. Free Radic Biol Med 30:916–923. doi: 10.1016/S0891-5849(01)00483-X PubMedCrossRefGoogle Scholar
  29. 29.
    Evans MD, Dizdaroglu M, Cooke MS (2004) Oxidative DNA damage and disease: induction, repair and significance. Mutat Res 567:1–61. doi: 10.1016/j.mrrev.2003.11.001 PubMedCrossRefGoogle Scholar
  30. 30.
    Yakes FM, Van Houten B (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc Natl Acad Sci USA 94:514–519. doi: 10.1073/pnas.94.2.514 PubMedCrossRefGoogle Scholar
  31. 31.
    Cooke MS, Evans MD, Dizdaroglu M, Lunec J (2003) Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17:1195–1214. doi: 10.1096/fj.02-0752rev PubMedCrossRefGoogle Scholar
  32. 32.
    Driggers WJ, Holmquist GP, LeDoux SP, Wilson GL (1997) Mapping frequencies of endogenous oxidative damage and the kinetic response to oxidative stress in a region of rat mtDNA. Nucleic Acids Res 25:4362–4369. doi: 10.1093/nar/25.21.4362 PubMedCrossRefGoogle Scholar
  33. 33.
    Anson RM, Croteau DL, Stierum RH, Filburn C, Parsell R, Bohr VA (1998) Homogenous repair of singlet oxygen induced DNA damage in differentially transcribed regions and strands of human mitochondrial DNA. Nucleic Acids Res 26:662–668. doi: 10.1093/nar/26.2.662 PubMedCrossRefGoogle Scholar
  34. 34.
    Stevnsner T, Thorslund T, de Souza-Pinto NC, Bohr VA (2002) Mitochondrial repair of 8-oxoguanine and changes with aging. Exp Gerontol 37:1189–1196. doi: 10.1016/S0531-5565(02)00142-0 PubMedCrossRefGoogle Scholar
  35. 35.
    Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly YM, Gidlof S, Oldfors A, Wibom R, Tornell J, Jacobs HT, Larsson NG (2004) Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature 429:417–423. doi: 10.1038/nature02517 PubMedCrossRefGoogle Scholar
  36. 36.
    Chen D, Cao G, Hastings T, Feng Y, Pei W, O’Horo C, Chen J (2002) Age dependent decline of DNA repair activity for oxidative lesions in rat brain mitochondria. J Neurochem 81:1273–1284. doi: 10.1046/j.1471-4159.2002.00916.x PubMedCrossRefGoogle Scholar
  37. 37.
    Wang AL, Lukas TJ, Yuan M, Neufeld AH (2008) Increased mitochondrial DNA damage and down-regulation of DNA repair enzymes in aged rodent retinal pigment epithelium and choroid. Mol Vis 14:644–651PubMedGoogle Scholar
  38. 38.
    Gredilla R, Garm C, Holm R, Bohr VA, Stevnsner T (2010) Differential age-related changes in mitochondrial DNA repair activities in mouse brain regions. Neurobiol Aging 31:993–1002. doi: 10.1016/j.neurobiolaging.2008.07.004 PubMedCrossRefGoogle Scholar
  39. 39.
    Karahalil B, Hogue BA, de Souza-Pinto NC, Bohr VA (2002) Base excision repair capacity in mitochondria and nuclei: tissue-specific variations. FASEB J 16:1895–1902. doi: 10.1096/fj.02-0463com PubMedCrossRefGoogle Scholar
  40. 40.
    Szczesny B, Hazra TK, Papaconstantinou J, Mitra S, Boldogh I (2003) Age-dependent deficiency in import of mitochondrial DNA glycosylases required for repair of oxidatively damaged bases. Proc Natl Acad Sci USA 100:10670–10675. doi: 10.1073/pnas.1932854100 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Bei Chen
    • 1
    • 2
  • Yi Zhong
    • 1
  • Wei Peng
    • 1
  • Yu Sun
    • 1
  • Yu-juan Hu
    • 1
  • Yang Yang
    • 1
  • Wei-jia Kong
    • 1
  1. 1.Department of OtolaryngologyUnion Hospital of Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
  2. 2.Department of OtolaryngologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina

Personalised recommendations