Molecular Biology Reports

, Volume 38, Issue 5, pp 3487–3494 | Cite as

Start codon targeted polymorphism for evaluation of functional genetic variation and relationships in cultivated peanut (Arachis hypogaea L.) genotypes

  • Faqian Xiong
  • Ruichun Zhong
  • Zhuqiang Han
  • Jing Jiang
  • Liangqiong He
  • Weijian Zhuang
  • Ronghua Tang


Cultivated peanut possesses an extremely narrow genetic basis. Polymorphism is considerably difficult to identify with the use of conventional biochemical and molecular tools. For the purpose of obtaining considerable DNA polymorphisms and fingerprinting cultivated peanut genotypes in a convenient manner, start codon targeted polymorphism technique was used to study genetic diversity and relatedness among 20 accessions of four major botanical varieties of peanut. Of 36 primers screened, 18 primers could produce unambiguous and reproducible bands. All 18 primers generated a total of 157 fragments, with a mean of 8.72 ranging from 4 to 17 per primer. Of 157 bands, 60 (38.22%) were polymorphic. One to seven polymorphic bands were amplified per primer, with 3.33 polymorphic bands on average. Polymorphism per primer ranged from 14.29 to 66.67%, with an average of 36.76%. The results revealed that not all accessions of the same variety were grouped together and high genetic similarity was detected among the tested genotypes based on cluster analysis and genetic distance analysis, respectively. Further, accession-specific markers were observed in several accessions. All these results demonstrated the following: (1) start codon targeted polymorphism technique can be utilized to identify DNA polymorphisms and fingerprint cultivars in domesticated peanut, and (2) it possesses considerable potential for studying genetic diversity and relationships among peanut accessions.


Start codon targeted polymorphism (SCoT) Peanut botanical variety Genetic diversity Functional molecular markers 



We are grateful to Dr. J.M. Wu for the technical assistance he has provided for this study. We wish to extend our gratitude to Dr. B.C.Y. Collard (International Rice Research Institute, IRRI), Dr. Y.W. Wei and Dr. W.D. Shi for their valuable discussions in the process of writing the manuscript. This research was supported by the earmarked fund for Modern Agro-Industry Technology Research System and grants from the National Natural Science Foundation of China (No. 30660094) and Guangxi Science Fund (Guikezi 0832088).


  1. 1.
    Kochert G, Stalker HM, Gimenes M, Galgaro L, Lopes CR, Moore K (1996) RFLP and cytogenetic evidence on the origins and evolution of allotetraploid domesticated peanut, Arachis hypogaea (Leguminosae). Am J Bot 83(10):1282–1291CrossRefGoogle Scholar
  2. 2.
    Tang RH, Gao GQ, He LQ, Han ZQ, Shan SH, Zhong RC, Zhou CQ, Jiang J, Li YR, Zhuang WJ (2007) Genetic diversity in cultivated groundnut based on SSR markers. J Genet Genom 34(5):449–459CrossRefGoogle Scholar
  3. 3.
    Tang RH, Zhuang WJ, Gao GQ, He LQ, Han ZQ, Shan SH, Jiang J, Li YR (2008) Phylogenetic relationships in genus Arachis based on SSR and AFLP markers. Agric Sci China 7(4):405–414Google Scholar
  4. 4.
    Tahernezhad Z, Zamani MJ, Solouki M, Zahravi M, Imamjomeh AA, Jafaraghaei M, Bihamta MR (2010) Genetic diversity of Iranian Aegilops tauschii Coss. using microsatellite molecular markers and morphological traits. Mol Biol Rep 37(7):3413–3420PubMedCrossRefGoogle Scholar
  5. 5.
    Sudheer Pamidimarri DV, Chattopadhyay B, Reddy MP (2009) Genetic divergence and phylogenetic analysis of genus Jatropha based on nuclear ribosomal DNA ITS sequence. Mol Biol Rep 36(7):1929–1935. doi: 10.1007/s11033-008-9401-6 PubMedCrossRefGoogle Scholar
  6. 6.
    Senthil Kumar R, Parthiban KT, Govinda Rao M (2009) Molecular characterization of Jatropha genetic resources through inter-simple sequence repeat (ISSR) markers. Mol Biol Rep 36(7):1951–1956PubMedCrossRefGoogle Scholar
  7. 7.
    Sudheer Pamidimarri DV, Singh S, Mastan SG, Patel J, Reddy MP (2009) Molecular characterization and identification of markers for toxic and non-toxic varieties of Jatropha curcas L. using RAPD, AFLP and SSR markers. Mol Biol Rep 36(6):1357–1364PubMedCrossRefGoogle Scholar
  8. 8.
    Sudheer Pamidiamarri DV, Pandya N, Reddy MP, Radhakrishnan T (2009) Comparative study of interspecific genetic divergence and phylogenic analysis of genus Jatropha by RAPD and AFLP: genetic divergence and phylogenic analysis of genus Jatropha. Mol Biol Rep 36(5):901–907PubMedCrossRefGoogle Scholar
  9. 9.
    Miao L, Shou S, Cai J, Jiang F, Zhu Z, Li H (2009) Identification of two AFLP markers linked to bacterial wilt resistance in tomato and conversion to SCAR markers. Mol Biol Rep 36(3):479–486PubMedCrossRefGoogle Scholar
  10. 10.
    Kazachkova N, Fahleson J, Meijer J (2004) Establishment of the amplified fragment length polymorphism (AFLP) technique for genotyping of pollen beetle (Meligethes aeneus)—a noxious insect pest on oilseed rape (Brassica napus). Mol Biol Rep 31(1):37–42PubMedCrossRefGoogle Scholar
  11. 11.
    Singh AK, Gurtu S, Jambunathan R (1993) Phylogenetic relationships in the genus Arachis based on seed protein profiles. Euphytica 74(3):219–225CrossRefGoogle Scholar
  12. 12.
    He GH, Prakash CS (1997) Identification of polymorphic DNA markers in cultivated peanut (Arachis hypogaea L.). Euphytica 97:143–149CrossRefGoogle Scholar
  13. 13.
    Subramanian V, Gurtu S, Rao RCN, Nigam SN (2000) Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA (RAPD) assay. Genome 43(4):656–660PubMedCrossRefGoogle Scholar
  14. 14.
    Raina SN, Rani V, Kojima T, Ogihara Y, Singh KP, Devarumath RM (2001) RAPD and ISSR fingerprints as useful genetic markers for analysis of genetic diversity, varietal identification, and phylogenetic relationships in peanut (Arachis hypogaea) cultivars and wild species. Genome 44(5):763–772PubMedGoogle Scholar
  15. 15.
    He GH, Prakash CS (2001) Evaluation of genetic relationships among botanical varieties of cultivated peanut (Arachis hypogaea L.) using AFLP markers. Genet Resour Crop Evol 48(4):347–352CrossRefGoogle Scholar
  16. 16.
    Herselman L (2003) Genetic variation among Southern African cultivated peanut (Arachis hypogaea L.) genotypes as revealed by AFLP analysis. Euphytica 133:319–327CrossRefGoogle Scholar
  17. 17.
    Hopkins MS, Casa AM, Wang T, Mitchell SE, Dean RE, Kochert GD, Kresovich S (1999) Discovery and characterization of polymorphic simple sequence repeats (SSRs) in peanut. Crop Sci 39(4):1243–1247CrossRefGoogle Scholar
  18. 18.
    Ferguson ME, Burow MD, Schulze SR, Bramel PJ, Paterson AH, Kresovich S, Mitchell S (2004) Microsatellite identification and characterization in peanut (A. hypogaea L.). Theor Appl Genet 108(6):1064–1070PubMedCrossRefGoogle Scholar
  19. 19.
    Jiang HF, Liao BS, Ren XP, Lei Y, Emma M, Fu TD, Crouch JH (2007) Comparative assessment of genetic diversity of peanut (Arachis hypogaea L.) genotypes with various levels of resistance to bacterial wilt through SSR and AFLP analyses. J Genet Genom 34(6):544–554CrossRefGoogle Scholar
  20. 20.
    Han ZQ, Gao GQ, Wei PX, Tang RH, Zhong RC (2004) Analysis of DNA polymorphism and genetic relationships in cultivated peanut (Arachis hypogaea L.) using microsatellite markers. Acta Agronomica Sinica 30(11):1097–1101Google Scholar
  21. 21.
    Moretzsohn MC, Leoi L, Proite K, Guimaraes PM, Leal-Bertioli SCM, Gimenes MA, Martins WS, Valls JFM, Grattapaglia D, Bertioli DJ (2005) A microsatellite-based, gene-rich linkage map for the AA genome of Arachis (Fabaceae). Theor Appl Genet 111(6):1060–1071PubMedCrossRefGoogle Scholar
  22. 22.
    Varshney RK, Bertioli DJ, Moretzsohn MC, Vadez V, Krishnamurthy L, Aruna R, Nigam SN, Moss BJ, Seetha K, Ravi K, He G, Knapp SJ, Hoisington DA (2009) The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theor Appl Genet 118:729–739PubMedCrossRefGoogle Scholar
  23. 23.
    Moretzsohn MC, Barbosa AVG, Alves-Freitas DMT, Teixeira C, Leal-Bertioli SCM, Guimaraes PM, Pereira RW, Lopes CR, Cavallari MM, Valls JFM, Bertioli DJ, Gimenes MA (2009) A linkage map for the B-genome of Arachis (Fabaceae) and its synteny to the A-genome. BMC Plant Biol 9:40. doi: 10.1186/1471-2229-9-40 PubMedCrossRefGoogle Scholar
  24. 24.
    Foncéka D, Hodo-Abalo T, Rivallan R, Faye I, Sall MN, Ndoye O, Fávero AP, Bertioli DJ, Glaszmann JC, Courtois B, Rami JF (2009) Genetic mapping of wild introgressions into cultivated peanut: a way toward enlarging the genetic basis of a recent allotetraploid. BMC Plant Biol 9:103. doi: 10.1186/1471-2229-9-103 PubMedCrossRefGoogle Scholar
  25. 25.
    Hong YB, Liang XQ, Chen XP, Liu HY, Zhou GY, Li SX, Wen SJ (2008) Construction of genetic linkage map based on SSR markers in peanut (Arachis hypogaea L.). Agric Sci China 7(8):915–921Google Scholar
  26. 26.
    Collard BCY, Mackill DJ (2009) Start codon targeted (SCoT) polymorphism: a simple, novel DNA marker technique for generating gene-targeted markers in plants. Plant Mol Biol Rep 27:86–93CrossRefGoogle Scholar
  27. 27.
    Joshi C, Zhou H, Huang XQ, Chiang VL (1997) Context sequences of translation initiation codon in plants. Plant Mol Biol 35:993–1001PubMedCrossRefGoogle Scholar
  28. 28.
    Sawant SV, Singh PK, Gupta SK, Madnala R, Tuli R (1999) Conserved nucleotide sequences in highly expressed genes in plants. J Genet 78:123–131CrossRefGoogle Scholar
  29. 29.
    Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76(10):5269–5273PubMedCrossRefGoogle Scholar
  30. 30.
    Singh AK, Smartt J, Simpson CE, Raina SN (1998) Genetic variation vis-a-vis molecular polymorphism in groundnut, Arachis hypogaea L. Genet Resour Crop Evol 45:119–126CrossRefGoogle Scholar
  31. 31.
    Andersen JR, Lübberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560PubMedCrossRefGoogle Scholar
  32. 32.
    Halward T, Stalker T, LaRue E, Kochert G (1992) Use of single-primer DNA amplifications in genetic studies of peanut (Arachis hypogaea L.). Plan Mol Biol 18:315–325CrossRefGoogle Scholar
  33. 33.
    Caetano-Anollés G, Bassam BJ, Gresshoff PM (1991) DNA amplification fingerprinting using short arbitrary oligonucleotide primers. Bio/Technology 9:553–557PubMedCrossRefGoogle Scholar
  34. 34.
    Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535PubMedCrossRefGoogle Scholar
  35. 35.
    Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20:176–183PubMedCrossRefGoogle Scholar
  36. 36.
    Vos P, Hogers R, Bleeper M, Reijans M, Van De Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  37. 37.
    Li G, Quiros CF (2001) Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103:455–461CrossRefGoogle Scholar
  38. 38.
    Hu J, Vick BA (2003) Target region amplification polymorphism: a novel marker technique for plant genotyping. Plant Mol Biol Rep 21:289–294CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Faqian Xiong
    • 1
    • 2
  • Ruichun Zhong
    • 1
  • Zhuqiang Han
    • 1
    • 2
  • Jing Jiang
    • 1
    • 2
  • Liangqiong He
    • 1
  • Weijian Zhuang
    • 3
  • Ronghua Tang
    • 1
    • 2
  1. 1.Cash Crops Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
  2. 2.Guangxi Crop Genetic Improvement and Biotechnology LaboratoryGuangxi Academy of Agricultural SciencesNanningChina
  3. 3.Fujian Province Key Lab of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouChina

Personalised recommendations