Molecular Biology Reports

, Volume 38, Issue 5, pp 3463–3470 | Cite as

Molecular cloning and expression analysis of the interferon-γ-inducible lysosomal thiol reductase gene from the shrimp Penaeus monodon

  • Kittima Kongton
  • Amornrat Phongdara
  • Moltira Tonganunt-Srithaworn
  • Warapond Wanna


The interferon-γ-inducible lysosomal thiol reductase enzymes (GILT) have been shown to play an important role in the processing of exogenous antigens by catalyzing disulfide bond reduction, that facilitates unfolding of the native protein antigen to simplify further cleavage by cellular proteases. In this study a Penaeus monodon GILT (PmGILT) gene was isolated from an EST library of white spot syndrome virus (WSSV)-infected P. monodon. The full-length cDNA of the PmGILT gene was 780 bp and contained an open reading frame of 657 bp that encoded 218 amino acid residues with a predicted protein molecular weight of 24 kDa. The deduced amino acid sequence of PmGILT contains an active site CXXS motif, a GILT signature sequence (CQHGX2ECX2NX4C) and 10 conserved cysteines together with other signature characteristics of GILT proteins. RT-PCR analysis showed that the PmGILT mRNA expression level was clearly up-regulated in the lymphoid organ of both the LPS-induced and WSSV-infected shrimp, compared to normal shrimp. In response to WSSV infection, the penaeid shrimp JAK/STAT pathway is reported to play an important role in the lymphoid organ. We hypothesize that this activated STAT may stimulate GILT expression so that it can be involved in the shrimp immune response system.


Shrimp (Penaeus monodonInterferon-gamma-inducible lysosomal thiol reductase (GILT) Gene expression Lipopolysaccharide (LPS) White spot syndrome virus (WSSV) 



We would like to thank the Office of the Higher Education Commission, Thailand for support through a grant funded to Ms. Kittima Kongton under a program from the Strategic Scholarships for Frontier Research Network for the Joint Ph.D. Program Thai Doctoral degree. This work was also supported by Prince of Songkla university grant. We thank Dr. Brian Hodgson for assistance with English language.


  1. 1.
    Lee SY, Söderhäll K (2002) Early events in crustacean innate immunity. Fish Shellfish Immunol 12:421–437. doi: 10.1006/fsim.2002.0420 PubMedCrossRefGoogle Scholar
  2. 2.
    Xing Y, Sun QF, Wang J (2008) Influence of dephasing on the quantum Hall effect and the spin Hall effect. Phys Rev B 77:115346–115352. doi: 10.1103/PhysRevB.77.115346 CrossRefGoogle Scholar
  3. 3.
    Cebulla CM, Miller DM, Sedmak DD (1999) Viral inhibition of interferon signal transduction. Intervirol 42:325–330. doi: 10.1159/000053968 CrossRefGoogle Scholar
  4. 4.
    Jones CM, Varesio L, Herberman RB, Pestka S (1982) Interferon activates macrophages to produce plasminogen activator. J Interferon Res 2:377–386. doi: 10.1089/jir.1982.2.377 PubMedCrossRefGoogle Scholar
  5. 5.
    Arunachalam B, Phan UT, Geuze HJ, Cresswell P (2000) Enzymatic reduction of disulfide bonds in lysosomes: characterization of a gamma-interferon-inducible lysosomal thiol reductase (GILT). Proc Natl Acad Sci USA 97:745–750. doi: 10.1073/pnas.97.2.745 PubMedCrossRefGoogle Scholar
  6. 6.
    Luster AD, Weinshank RL, Feinman R, Ravetch JV (1988) Molecular and biochemical characterization of a novel γ-interferon-inducible protein. J Biol Chem 263:12036–12043PubMedGoogle Scholar
  7. 7.
    Maric M, Arunachalam B, Phan UT, Chen D, Garrett WS, Cannon KS et al (2001) Defective antigen processing in GILT-free mice. Science 294:1361–1365. doi: 10.1126/science.1065500 PubMedCrossRefGoogle Scholar
  8. 8.
    Phan UT, Maric M, Dick TP, Cresswell P (2001) Multiple species express thiol oxidoreductases related to GILT. Immunogenetics 53:342–346. doi: 10.1007/s002510100323 PubMedCrossRefGoogle Scholar
  9. 9.
    Germain RN, Margulies DH (1993) The biochemistry and cell biology of antigen processing and presentation. Annu Rev Immunol 11:403–450. doi: 10.1146/annurev.iy.11.040193.002155 PubMedCrossRefGoogle Scholar
  10. 10.
    Collins DS, Unanue ER, Harding CV (1991) Reduction of disulfide bonds within lysosomes is a key step in antigen processing. J Immunol 147:4054–4059PubMedGoogle Scholar
  11. 11.
    Li P, Haque MA, Blum JS (2002) Role of disulfide bonds in regulating antigen processing and epitope selection. J Immunol 169:2444–2450PubMedGoogle Scholar
  12. 12.
    Thai R, Moine G, Desmadril M, Servent D, Tarride J, Menez A et al (2004) Antigen stability controls antigen presentation. J Biol Chem 279:50257–50266. doi: 10.1074/jbc.M405738200 PubMedCrossRefGoogle Scholar
  13. 13.
    O’Donnell PW, Haque A, Klemsz MJ, Kaplan MH, Blum JS (2004) Cutting edge: induction of the antigen-processing enzyme IFN-γ-inducible lysosomal thiol reductase in melanoma cells is STAT1-dependent but CIITA-independent. J Immunol 173:731–735PubMedGoogle Scholar
  14. 14.
    Barjaktarevic I, Rahman A, Radoja S, Bogunovic B, Vollmer A, Vukmanovic S et al (2006) Inhibitory role of IFN-γ-inducible lysosomal thiol reductase in T cell activation. J Immunol 177:4369–4375PubMedGoogle Scholar
  15. 15.
    Lackman RL, Cresswell P (2006) Exposure of the promonocytic cell line THP-1 to Escherichia coli induces IFN-γ-inducible lysosomal thiol reductase expression by inflammatory cytokines. J Immunol 177:4833–4840PubMedGoogle Scholar
  16. 16.
    Dan WB, Ren F, Zhang C, Zhang SQ (2007) Molecular cloning and expression analysis of interferon-γ-inducible-lysosomal thiol reductase gene in orange-spotted grouper, Epinephelus coioides. Fish Shellfish Immunol 23:1315–1323. doi: 10.1016/j.fsi.2007.07.005 PubMedGoogle Scholar
  17. 17.
    Dan WB, Wang SL, Liang JQ, Zhang SQ (2008) Molecular cloning and expression analysis of porcine γ-interferon-inducible lysosomal thiol reductase (GILT). Vet Immunol Immunopathol 126:163–167. doi: 10.1016/j.vetimm.2008.06.009 PubMedCrossRefGoogle Scholar
  18. 18.
    Zoysa MD, Lee J (2007) Molecular cloning and expression analysis of interferon-γ inducible lysosomal thiol reductase (GILT)-like cDNA from disk abalone (Haliotis discus discus). J Invertebr Pathol 96:221–229. doi: 10.1016/j.jip.2007.05.009 PubMedCrossRefGoogle Scholar
  19. 19.
    Zheng W, Chen X (2006) Cloning and expression analysis of interferon-γ-inducible-lysosomal thiol reductase gene in large yellow croaker (Pseudosciaena crocea). Mol Immunol 43:2135–2141. doi: 10.1016/j.molimm.2006.01.001 PubMedCrossRefGoogle Scholar
  20. 20.
    Lackman RL, Jamieson AM, Griffith JM, Geuze H, Cresswell P (2007) Innate immune recognition triggers secretion of lysosomal enzymes by macrophages. Traffic 8:1179–1189. doi: 10.1111/j.1600-0854.2007.00600.x PubMedCrossRefGoogle Scholar
  21. 21.
    Phan UT, Arunachalam B, Cresswell P (2000) Gamma-interferon-inducible lysosomal thiol reductase (GILT): maturation, activity and mechanism of action. J Biol Chem 275:25907–25914. doi: 10.1074/jbc.M003459200 PubMedCrossRefGoogle Scholar
  22. 22.
    Liu N, Zhang S, Liu Z, Gaowa S, Wang Y (2007) Characterization and expression of gamma-interferon-inducible lysosomal thiol reductase (GILT) gene in amphioxus Branchiostoma belcheri with implications for GILT in innate immune response. Mol Immunol 44:2631–2637. doi: 10.1016/j.molimm.2006.12.013 PubMedCrossRefGoogle Scholar
  23. 23.
    He N, Qin Q, Xu X (2005) Differential profile of genes expressed in hemocytes of white spot syndrome virus-resistant shrimp (Penaeus japonicus) by combining suppression subtractive hybridization and differential hybridization. Antiviral Res 66:39–45. doi: 10.1016/j.antiviral.2004.12.010 PubMedCrossRefGoogle Scholar
  24. 24.
    Tassanakajon A, Klinbunga S, Paunglarp N, Rimphanitchayakit V, Udomkit A, Jitrapakdee S et al (2006) Penaeus monodon gene discovery project: the generation of an EST collection and establishment of a database. Gene 384:104–112. doi: 10.1016/j.gene.2006.07.012 PubMedCrossRefGoogle Scholar
  25. 25.
    Lo CF, Ho CH, Peng SE, Chen CH, Hsu HC, Chiu YL et al (1996) White spot syndrome baculovirus (WSBV) detected in cultured and captured shrimp, crabs and other arthropods. Dis Aquat Org 27:215–225. doi: 10.3354/dao027215 CrossRefGoogle Scholar
  26. 26.
    Lo CF, Leu JH, Ho CH, Chen CH, Peng SE, Chen YT et al (1996) Detection of baculovirus associated with white spot syndrome (WSBV) in penaeid shrimps using polymerase chain reaction. Dis Aquat Org 25:133–141. doi: 10.3354/dao025133 CrossRefGoogle Scholar
  27. 27.
    Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi: 10.1093/nar/22.22.4673 PubMedCrossRefGoogle Scholar
  28. 28.
    Wunderlich M, Otto A, Maskos K, Mucke M, Seckler R, Glockshuber R (1995) Efficient catalysis of disulfide formation during protein folding with a single active-site cysteine. J Mol Biol 247:28–33. doi: 10.1006/jmbi.1995.0119 PubMedCrossRefGoogle Scholar
  29. 29.
    Pongsomboon S, Wongpanya R, Tang S, Chalorsrikul A, Tassanakajon A (2008) Abundantly expressed transcripts in the lymphoid organ of the black tiger shrimp, Penaeus monodon, and their implication in immune function. Fish Shellfish Immunol 25:485–493. doi: 10.1016/j.fsi.2008.07.010 PubMedCrossRefGoogle Scholar
  30. 30.
    Liu WJ, Chang YS, Wang AH, Kou GH, Lo CF (2007) White spot syndrome virus annexes a shrimp STAT to enhance expression of the immediate-early gene ie1. J Virol 81:1461–1471. doi: 10.1128/JVI.01880-06 PubMedCrossRefGoogle Scholar
  31. 31.
    Chen WY, Ho KC, Leu JH, Liu KF, Wang HC, Kou GH et al (2008) WSSV infection activates STAT in shrimp. Dev Comp Immunol 32:1142–1150. doi: 10.1016/j.dci.2008.03.003 PubMedCrossRefGoogle Scholar
  32. 32.
    Darnell JE Jr, Kerr IM, Stark GR (1994) Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 264:1415–1421. doi: 10.1126/science.8197455 PubMedCrossRefGoogle Scholar
  33. 33.
    Levy DE (1995) Interferon induction of gene expression through the Jak–Stat pathway. Semin Virol 6:181–189. doi: 10.1006/smvy.1995.0023 CrossRefGoogle Scholar
  34. 34.
    Decker T, Stockinger S, Karaghiosoff M, Muller M, Kovarik P (2002) IFNs and STATs in innate immunity to microorganisms. J Clin Invest 109:1271–1277. doi: 10.1172/JCI200215770 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Kittima Kongton
    • 1
  • Amornrat Phongdara
    • 1
  • Moltira Tonganunt-Srithaworn
    • 2
  • Warapond Wanna
    • 1
  1. 1.Center for Genomics and Bioinformatics Research, Faculty of SciencePrince of Songkla UniversityHat-YaiThailand
  2. 2.Department of Microbiology, Faculty of Liberal Arts and ScienceKasetsart UniversityNakorn-PathomThailand

Personalised recommendations