Molecular Biology Reports

, Volume 38, Issue 4, pp 2723–2728 | Cite as

Identification of SNPs within the sheep PROP1 gene and their effects on wool traits



Regarding mutations of PROP1 (Prophet of POU1F1) gene significantly associating with combined pituitary hormone deficiency (CPHD) in human patients and animals, PROP1 gene is a novel important candidate gene for detecting genetic variation and growth, reproduction, metabolism traits selection and breeding. The aim of this study was to detect PROP1 gene mutation of the exon 1–3 and its association with wool traits in 345 Chinese Merino sheep. In this study, on the basis of PCR-SSCP and DNA sequencing methods, ten novel SNPs within the sheep PROP1 gene, namely, AY533708: g.45A > G resulting in Glu15Glu, g.1198A > G, g.1341G > C resulting in Arg63Ser, g.1389G > A resulting in Ala79Ala, g.1402C > T resulting in Leu84Leu, g.1424A > G resulting in Asn91Ser, g.1522C > T, g.1556A > T, g.1574T > C, g.2430C > G were reported. In addition, association analysis showed that three genotypes of P4 fragment were significantly associated with fiber diameter in the analyzed population (P = 0.044). These results strongly suggested that polymorphisms of the PROP1 gene could be a useful molecular marker for sheep breeding and genetics through marker-assisted selection (MAS).


Sheep PROP1 gene SNP Wool traits 



This study was financially supported by the International Scientific Research and Academic Cooperation program of China (no. 2007DFB30420).


  1. 1.
    Agarwal G, Bhatia V, Cook S, Thomas PQ (2000) Adrenocorticotropin deficiency in combined pituitary hormone deficiency patients homozygous for a novel PROP1 deletion. J Clin Endocrinol Metab 85:4556–4561PubMedCrossRefGoogle Scholar
  2. 2.
    Showalter AD, Smith TPL, Bennett GL, Sloop KW, Whitsett JA, Rhodes SJ (2002) Differential conservation of transcriptional domains of mammalian prophet of pit-1 proteins revealed by structural studies of the bovine gene and comparative functional analysis of the protein. Gene 291:211–221. doi: S0378-1119(02)00599-1 PubMedCrossRefGoogle Scholar
  3. 3.
    Nakayama M, Kato T, Susa T, Sano A, Kitahara K, Kato Y (2009) Dimeric PROP1 binding to diverse palindromic TAAT sequences promotes its transcriptional activity. Mol Cell Endocrinol 307:36–42. doi: 10.1016/j.mce.2009.03.010 PubMedCrossRefGoogle Scholar
  4. 4.
    Sloop KW, Schiller AM, Smith TPL, Blanton JR, Rohrer GA, Meier BC, Rhodes SJ (2000) Biochemical and genetic characterization of the porcine Prophet of Pit-1 pituitary transcription factor. Mol Cell Endocrinol 168(1–2):77–87. doi: 10.1016/S0303-7207(00)00318-X PubMedCrossRefGoogle Scholar
  5. 5.
    Xekouki P, Sertedaki A, Livadas S, Argyropoulou M, Voutetakis A (2007) PROP1 gene mutations and pituitary size: a unique case of two consecutive cycles of enlargement and regression. Horm Res 67:109–113. doi: 10.1159/000097564 CrossRefGoogle Scholar
  6. 6.
    Kaffel N, Castinetti F, Reynaud R, Saveanu A, Mnif M, Fourati M, Kammoun H, Enjalbert A, Barlier A, Abid M, Brue T (2007) Genetic anti-hypophyseal insufficiency by mutation of R73C of genre PROP1: on the case of a Tunisian family. Diabetes Metab 33:S101–S123Google Scholar
  7. 7.
    Sloop KW, Parker GE, Rhodes SJ (2001) Transcriptional regulation in mammalian pituitary development and disease. Curr Genomics 2:379–398CrossRefGoogle Scholar
  8. 8.
    Tang K, Bartke A, Gardiner CS, Wagner TE, Yun JS (1993) Gonadotropin secretion, synthesis, and gene expression in human growth hormone transgenic mice and in Ames dwarf mice. Endocrinol 132:2518–2524CrossRefGoogle Scholar
  9. 9.
    Wu W, Cogan JD, Pfaffle RW, Dasen JS, Frisch H, O’Connell SM, Flynn SE, Brown MR, Mullis PE, Parks JS, Phillips JA, Rosenfeld MG (1998) Mutations in PROP1 cause familial combined pituitary hormone deficiency. Nat Genet 18(2):147–149. doi: 10.1038/ng0298-147 PubMedCrossRefGoogle Scholar
  10. 10.
    Carvalho L, Ward RD, Brinkmeier ML, Anne Potok M, Vesper AH, Camper SA (2006) Molecular basis for pituitary dysfunction: comparison of PROP1 and Pit1 mutant mice. Dev Biol 295:340. doi: 10.1016/j.ydbio.2006.04.056 CrossRefGoogle Scholar
  11. 11.
    Pernasetti F, Toledo SP, Vasilyev VV, Hayashida CY, Cogan JD, Ferrari C, Lourenco DM, Mellon PL (2000) Impaired adrenocorticotropin-adrenal axis in combined pituitary hormone deficiency caused by a two-base pair deletion (301–302delAG) in the prophet of Pit-1 gene. J Clin Endocrinol Metab 85:390–397PubMedCrossRefGoogle Scholar
  12. 12.
    Esperante SA, Rivolta CM, Caputo M, González-Sarmiento R, Targovnik HM (2008) Identification and characterization of new variants of three associated SNPs and a microsatellite in the TSH receptor gene which are useful for genetic studies. Mol Cell Probes 22(5–6):281–286PubMedCrossRefGoogle Scholar
  13. 13.
    Gupta N, Ahlawat SPS, Kumar D, Gupta SC, Pandey A, Malik G (2007) Single nucleotide polymorphism in growth hormone gene exon-4 and exon-5 using PCR-SSCP in Black Bengal goats-a prolific meat breed of India. Meat Sci 76(4):658–665. doi: 10.1016/j.meatsci.2007.02.005 CrossRefGoogle Scholar
  14. 14.
    Hua GH, Chen SL, Yu JN, Cai KL, Wu CJ, Li QL, Zhang CY, Liang AX, Han L, Geng LY, Shen Z, Xu DQ, Yang LG (2009) Polymorphism of the growth hormone gene and its association with growth traits in Boer goat bucks. Meat Sci 81(2):391–395. doi: 10.1016/j.meatsci.2008.08.015 CrossRefGoogle Scholar
  15. 15.
    Katoh K, Kouno S, Okazaki A, Suzuki K, Obara Y (2008) Interaction of GH polymorphism with body weight and endocrine functions in Japanese black calves. Domest Anim Endocrin 34(1):25–30. doi: 10.1016/j.domaniend.2006.10.003 CrossRefGoogle Scholar
  16. 16.
    Rose J, Kennedy M, Johnston B, Foster W (1998) Serum prolactin and dehydroepiandrosterone concentrations during the summer and winter hair growth cycles of mink (Mustela vison). Comp Biochem Phys A 121(3):263–271. doi: 10.1016/S1095-6433(98)10127-7 CrossRefGoogle Scholar
  17. 17.
    Santiago-Moreno J, López-Sebastián A, del Campo A, González-Bulnes A, Picazo R, Gómez-Brunet A (2004) Effect of constant-release melatonin implants and prolonged exposure to a long day photoperiod on prolactin secretion and hair growth in mouflon (Ovis gmelini musimon). Domest Anim Endocrin 26(4):303–314. doi: 10.1016/j.domaniend.2003.12.004 CrossRefGoogle Scholar
  18. 18.
    Wang XP, Wang LX, Luo-Reng ZM, Sun SD (2008) Analysis of PRLR and BF genotypes associated with litter size in Beijing Black pig population. Agri Sci China 7(11):1374–1378Google Scholar
  19. 19.
    Lan XY, Pan CY, Chen H, Lei CZ, Li FY, Zhang HY, Ni YS (2009) Association of novel SNP of goat prolactin (PRL) gene with cashmere traits. J Appl Genet 50(1):51–54PubMedCrossRefGoogle Scholar
  20. 20.
    Lan XY, Shu JH, Chen H, Pan CY, Lei CZ, Wang X, Liu SQ, Zhang YB (2009) A PstI polymorphism at 3UTR of goat POU1F1 gene and its effect on cashmere production. Mol Biol Rep 36:1371–1374. doi: 10.1007/s11033-008-9322-4 PubMedCrossRefGoogle Scholar
  21. 21.
    Lan XY, Pan CY, Li JY, Guo YW, Hu S, Wang J, Liu YB, Hu SR, Lei CZ, Chen H (2009) Twelve novel SNPs of the goat POU1F1 gene and their associations with cashmere traits. Small Rumin Res 85(2):116–121. doi: 10.1016/j.smallrumres.2009.08.002 CrossRefGoogle Scholar
  22. 22.
    Pan CY, Lan XY, Chen H, Hua LS, Guo YK, Zhang B, Lei CZ (2007) Five novel single nucleotide polymorphisms (SNPs) of the prophet of PIT1 (PROP1) gene in bovine. Arch Fur Tierzucht-Archives Anim Breed 50(4):421–423Google Scholar
  23. 23.
    Heng WN, Guo CH, Zhang XH, Zhang CQ, Chen YH (2007) Preliminary comparison of PROP1 gene between Miniature Pig and Meishan Pig. Biotechnol Bull 5:144–147 (in Chinese with English abstract)Google Scholar
  24. 24.
    Lan XY, Pan CY, Zhang LZ, Zhao M, Zhang CL, Lei CZ, Chen H (2009) A novel missense (A79 V) mutation of goat PROP1 gene and its association with production traits. Mol Biol Rep 36:2069–2073. doi: 10.1007/s11033-008-9418-x PubMedCrossRefGoogle Scholar
  25. 25.
    Guy JC, Hunter CS, Showalter AD, Smith TPL, Charoonpatrapong K, Sloop KW, Bidwell JP, Rhodes SJ (2004) Conserved amino acid sequences confer nuclear localization upon the Prophet of Pit-1 pituitary transcription factor protein. Gene 336:263–273. doi: 10.1016/j.gene.2004.04.022 PubMedCrossRefGoogle Scholar
  26. 26.
    Liu YF, Gao JF, Pan XL, Dai JS, Li DQ (1997) A study on preparation of DNA from sheep blood. J Shihezi Univ Nat Sci 1(2):136–138 (in Chinese with English abstract)Google Scholar
  27. 27.
    Sanguinetti CJ, Dias Neto E, Simpson AJ (1994) Rapid silver-staining and recovery of PCR products separated on polyacrylamide gels. Biotechniques 17(5):914–921PubMedGoogle Scholar
  28. 28.
    Zhang YN, Zhang EP, Wu D, Chen YL (2007) Studies of the relationship between polymorphism of KAP gene and economic traits for Liaoning Cashmere goat. Agri Sci China 40:2062–2067 (in Chinese with English abstract)Google Scholar
  29. 29.
    Cushman LJ, Showalter AD, Rhodes SJ (2002) Genetic defects in the development and function of the anterior pituitary gland. Ann Med 34:179–191PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Xian-Cun Zeng
    • 1
  • Han-Ying Chen
    • 2
  • Bin Jia
    • 1
  • Zong-Sheng Zhao
    • 1
  • Wen-Qiao Hui
    • 1
  • Zun-Bao Wang
    • 1
  • Ying-Chun Du
    • 1
  1. 1.College of Animal Science and TechnologyShihezi UniversityShiheziPeople’s Republic of China
  2. 2.College of PharmacyShihezi UniversityShiheziPeople’s Republic of China

Personalised recommendations