Skip to main content

Advertisement

Log in

Evolutionary dynamics of spliceosomal intron revealed by in silico analyses of the P-Type ATPase superfamily genes

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

It has been long debated whether spliceosomal introns originated in the common ancestor of eukaryotes and prokaryotes. In this study, we tested the possibility that extant introns were inherited from the common ancestor of eukaryotes and prokaryotes using in silico simulation. We first identified 21 intron positions that are shared among different families of the P-Type ATPase superfamily, some of which are known to have diverged before the separation of prokaryotes and eukaryotes. Theoretical estimates of the expected number of intron positions shared by different genes suggest that the introns at those 21 positions were inserted independently. There seems to be no intron that arose from before the diversification of the P-Type ATPase superfamily. Namely, the present introns were inserted after the separation of eukaryotes and prokaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kersanach R, Brinkmann H, Liaud M, Zhang D, Martin W, Cerff R (1994) Five identical intron positions in ancient duplicated genes of eubacterial origin. Nature 367:387–389

    Article  PubMed  CAS  Google Scholar 

  2. de Roos A (2007) Conserved intron positions in ancient protein modules. Biol Direct 2:7

    Article  PubMed  Google Scholar 

  3. Rogozin I, Wolf Y, Sorokin A, Mirkin B, Koonin E (2003) Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Curr Biol 13:1512–1517

    Article  PubMed  CAS  Google Scholar 

  4. Nguyen H, Yoshihama M, Kenmochi N (2005) New maximum likelihood estimators for eukaryotic intron evolution. PLoS Comput Biol 1:e79

    Article  PubMed  Google Scholar 

  5. Rzhetsky A, Ayala F, Hsu L, Chang C, Yoshida A (1997) Exon/intron structure of aldehyde dehydrogenase genes supports the “introns-late” theory. Proc Natl Acad Sci USA 94:6820–6825

    Article  PubMed  CAS  Google Scholar 

  6. de Souza S (2003) The emergence of a synthetic theory of intron evolution. Genetica 118:117–121

    Article  PubMed  Google Scholar 

  7. Sverdlov A, Csuros M, Rogozin I, Koonin E (2007) A glimpse of a putative pre-intron phase of eukaryotic evolution. Trends Genet 23:105–108

    Article  PubMed  CAS  Google Scholar 

  8. Iwabe N, Kuma K, Kishino H, Hasegawa M, Miyata T (1990) Compartmentalized isozyme genes and the origin of introns. J Mol Evol 31:205–210

    Article  PubMed  CAS  Google Scholar 

  9. Axelsen K, Palmgren M (1998) Evolution of substrate specificities in the P-type ATPase superfamily. J Mol Evol 46:84–101

    Article  PubMed  CAS  Google Scholar 

  10. Okamura H, Denawa M, Ohniwa R, Takeyasu K (2003) P-type ATPase superfamily: evidence for critical roles for kingdom evolution. Ann N Y Acad Sci 986:219–223

    Article  PubMed  CAS  Google Scholar 

  11. Benson D, Karsch-Mizrachi I, Lipman D, Ostell J, Wheeler D (2007) GenBank. Nucleic Acids Res 35:D21–D25

    Article  PubMed  CAS  Google Scholar 

  12. Pruitt K, Tatusova T, Maglott D (2007) NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35:D61–D65

    Article  PubMed  CAS  Google Scholar 

  13. Katoh K, Misawa K, Kuma K, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30:3059–3066

    Article  PubMed  CAS  Google Scholar 

  14. Felsenstein J (1989) PHYLIP—phylogeny inference package (Version 3.2). Cladistics 5:164–166

    Google Scholar 

  15. Vingron M, Sibbald P (1993) Weighting in sequence space: a comparison of methods in terms of generalized sequences. Proc Natl Acad Sci USA 90:8777–8781

    Article  PubMed  CAS  Google Scholar 

  16. Higgins D, Thompson J, Gibson T (1996) Using CLUSTAL for multiple sequence alignments. Methods Enzymol 266:383–402

    Article  PubMed  CAS  Google Scholar 

  17. Cho G, Doolittle R (1997) Intron distribution in ancient paralogs supports random insertion and not random loss. J Mol Evol 44:573–584

    Article  PubMed  CAS  Google Scholar 

  18. Roy S, Gilbert W (2005) Rates of intron loss and gain: implications for early eukaryotic evolution. Proc Natl Acad Sci USA 102:5773–5778

    Article  PubMed  CAS  Google Scholar 

  19. Dibb N, Newman A (1989) Evidence that introns arose at proto-splice sites. EMBO J 8:2015–2021

    PubMed  CAS  Google Scholar 

  20. Tomita M, Shimizu N, Brutlag D (1996) Introns and reading frames: correlation between splicing sites and their codon positions. Mol Biol Evol 13:1219–1223

    PubMed  CAS  Google Scholar 

  21. Long M, de Souza S, Rosenberg C, Gilbert W (1998) Relationship between “proto-splice sites” and intron phases: evidence from dicodon analysis. Proc Natl Acad Sci USA 95:219–223

    Article  PubMed  CAS  Google Scholar 

  22. Endo T, Fedorov A, de Souza S, Gilbert W (2002) Do introns favor or avoid regions of amino acid conservation? Mol Biol Evol 19:252–521

    Google Scholar 

  23. Roy S, Nosaka M, de Souza S, Gilbert W (1999) Centripetal modules and ancient introns. Gene 238:85–91

    Article  PubMed  CAS  Google Scholar 

  24. Kaessmann H, Zollner S, Nekrutenko A, Li W (2002) Signatures of domain shuffling in the human genome. Genome Res 12:1642–1650

    Article  PubMed  CAS  Google Scholar 

  25. Long M, Deutsch M (1999) Association of intron phases with conservation at splice site sequences and evolution of spliceosomal introns. Mol Biol Evol 16:1528–1534

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Oda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Data 1

Alignment of amino acids used in this study. Amino acids given in upper-case letters were used under the strict rule, while under the generous rule, amino acids given in upper- and lower-case letters, except for “x”, were used. The letter “x” represents amino acids which were not used in any calculations. (FAS 2540 kb)

Supplemental Table 1

Positions of introns found in the P-Type ATPase genes and the names of genes which have introns at these positions. The first column indicates positions of nucleotides before the introns, and the second column indicates positions of nucleotides after the introns. The third and subsequent columns indicate the names of genes. (XLS 114 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oda, T., Ohniwa, R.L., Suzuki, Y. et al. Evolutionary dynamics of spliceosomal intron revealed by in silico analyses of the P-Type ATPase superfamily genes. Mol Biol Rep 38, 2285–2293 (2011). https://doi.org/10.1007/s11033-010-0360-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0360-3

Keywords

Navigation