Molecular Biology Reports

, Volume 38, Issue 3, pp 2075–2083 | Cite as

Isolation and characterization of a gene encoding cinnamoyl-CoA reductase from Isatis indigotica Fort.

  • Yongsheng Hu
  • Peng Di
  • Junfeng Chen
  • Ying Xiao
  • Lei Zhang
  • Wansheng Chen


A novel cinnamoyl-CoA reductase gene, designated as Iiccr (GenBank Accession No. GQ872418) was cloned from Isatis indigotica Fort. The full-length cDNA of Iiccr was 1368 bp with an ORF of 1026 bp that putatively encoded a polypeptide of 341 amino acids, with a predicted molecular mass of 37.50 kDa. The deduced amino acid sequence of IiCCR shared high homology with other known CCRs. No intron was detected in the genomic sequence of Iiccr. Southern-blot analysis revealed that Iiccr was a high-copy gene and real-time quantitative PCR analysis indicated that Iiccr was constitutively expressed in roots, stems and leaves of I. indigotica, with the highest expression level in roots. The results from treatment experiments using different signaling components for plant defense responses including methyl jasmonate (MeJA), gibberellins (GA3), abscisic acid (ABA) and ultraviolet-B revealed that expression of IiCCR had a prominent diversity. The full-length of ORF was sub-cloned into prokaryotic expression vector pET32a(+), which was then transferred into E. coli BL21(DE3). The recombinant protein had high expression level in E. coli BL21(DE3) with IPTG induction. A 2.6 kb long promoter sequence was isolated and its putative regulatory elements and potential specific transcription factor binding sites were analyzed. This study will enable us to further understand the role of IiCCR in the synthesis of phenylpropanoid compounds in I. indigotica Fort. at the molecular level.


Lignin biosynthesis Phenylpropanoid pathway Rapid amplification of cDNA ends (RACE) Isatis indigotica Fort. Cinnamoyl-CoA reductase 



Open reading framed


Rapid amplification of cDNA ends


Polymerase chain reaction


Isopropyl β-d-1-thiogalactopyranoside



This research was financially supported by National Natural Science Foundation of China (30900786); Modernization of traditional Chinese medicine foundation (08DZ1971502) and Domestic science and technology cooperation projects (10495801400, 10395820200), Shanghai Science and Technology Committee.

Supplementary material

11033_2010_333_MOESM1_ESM.jpg (398 kb)
Fig. S1 The full-length cDNA sequence and deduced amino acid sequence of Iiccr. The start codon (ATG) is in italics and the stop codon (TGA) is in bold (JPG 398 kb)
11033_2010_333_MOESM2_ESM.jpg (367 kb)
Fig. S2 Alignment of the deduced amino acid sequences of IiCCR and other known plant CCRs. The completely identical residues and the conserved residues among the aligned sequences were black and gray shaded, respectively. The common signature CCR catalytic site and the putative NADP binding domain are boxed. IiCCR (I. indigotica, GQ872418); AtCCR (A. thaliana, AAL37194.1); RsCCR (R. sativus, BAC58030.1); TaCCR (Triticum aestivum, ABE01883.1); PtCCR (Pinus taeda, AAL47684.1); OsCCR (Oryza sativa, CAD21520.1) (JPG 367 kb)
11033_2010_333_MOESM3_ESM.jpg (185 kb)
Fig. S3 The secondary structure of the deduced IiCCR protein. Alpha helix, extended strand and random coil were represented by the longest, the second longest and the shortest vertical bars respectively (JPG 185 kb)
11033_2010_333_MOESM4_ESM.jpg (149 kb)
Fig. S4 The three-dimensional structure of the deduced of IiCCR protein established by homology-based modeling. The a-helix and b-sheet were indicated in red and blue, respectively. Turns and loops were indicated in silver (JPG 149 kb)
11033_2010_333_MOESM5_ESM.jpg (87 kb)
Fig. S5 Phylogenetic relationships of CCR proteins from different species. Sequences were identified by the names of species. Eucalyptus (Eucalyptus globulus, AAT74889.1); Corymbia (Corymbia citriodora subsp. variegata, ABQ95557.1); Codonopsis (Codonopsis lanceolata, BAE48787.1); Scutellaria (Scutellaria baicalensis, ACB45437.1); Solanum (Solanum tuberosum, AAN71761.1); Lycopersicon (Lycopersicon esculentum, AAY41880.1); Arabidopsis (A. thaliana, AAL37194.1); Raphanus (R. sativus, BAC58030.1); Isatis (I. indigotica, GQ872418); Triticum (T. aestivum, ABE01883.1); Zea (Zea mays, AAO42630.1); Oryza (O. sativa, CAD21520.1); Mesorhizobium (Mesorhizobium loti MAFF303099, NP_103432.1); Streptomyces (Streptomyces avermitilis MA-4680, NP_821682.1); Aspergillus (Aspergillus flavus NRRL3357, XP_002372662.1); Talaromyces (Talaromyces stipitatus ATCC 10500, XP_002486183.1) (JPG 88 kb)
11033_2010_333_MOESM6_ESM.jpg (191 kb)
Fig. S6 Iiccr promoter sequence. A 2.6 kb genomic DNA fragment flanking the 5′-end of the gene contains several putative regulatory elements including a TATA box (sequences are boxed), CAAT box (sequences are underlined) and Gbox (sequences are yellow background). Potential specific transcription factor binding sites were identified by PLACE. MYBST1 sites (sequences are red), MYBPZM sites (sequences are green). The deduced transcription factor binding sites by the computer-based TFSEARCH program are blue background (JPG 192 kb)


  1. 1.
    Bayindir U, Alfermann AW, Fuss E (2008) Hinokinin biosynthesis in linum corymbulosum reichenb. Plant J 55(5):810–820. doi: TPJ355810.1111/j.1365-313X.2008.03558.x CrossRefPubMedGoogle Scholar
  2. 2.
    Ríos JL, Giner RM, Prieto JM (2002) New findings on the bioactivity of lignans. In: Attaur R (ed) Studies in natural products chemistry, vol 26, Part 7. Elsevier, Amsterdam, pp 183–292Google Scholar
  3. 3.
    Whetten RW, MacKay JJ, Sederoff RR (1998) Recent advances in understanding lignin biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 49:585–609. doi: 10.1146/annurev.arplant.49.1.585 CrossRefPubMedGoogle Scholar
  4. 4.
    Baucher M, Monties B, Montagu M, Boerjan W (1998) Biosynthesis and genetic engineering of lignin. Crit Rev Plant Sci 17(2):125–197. doi: 1080/07352689891304203 CrossRefGoogle Scholar
  5. 5.
    Goujon T, Sibout R, Eudes A, MacKay J, Jouanin L (2003) Genes involved in the biosynthesis of lignin precursors in Arabidopsis thaliana. Plant Physiol Biochem 41(8):677–687. doi: 10.1016/S0981-9428(03)00095-0 CrossRefGoogle Scholar
  6. 6.
    Rogers LA, Campbell MM (2004) The genetic control of lignin deposition during plant growth and development. New Phytol 164(1):17–30. doi: 10.1111/j.1469-8137.2004.01143.x CrossRefGoogle Scholar
  7. 7.
    Humphreys JM, Chapple C (2002) Rewriting the lignin roadmap. Curr Opin Plant Biol 5(3):224–229. doi: 10.1016/S1369-5266(02)00257-1 CrossRefPubMedGoogle Scholar
  8. 8.
    Peter G, Neale D (2004) Molecular basis for the evolution of xylem lignification. Curr Opin Plant Biol 7(6):737–742. doi: 10.1016/j.pbi.2004.09.002 CrossRefPubMedGoogle Scholar
  9. 9.
    Rogers L, Campbell M (2004) The genetic control of lignin deposition during plant growth and development. New Phytol 17–30. doi: 10.1111/j.1469-8137.2004.01143.x
  10. 10.
    Goffner D, Campbell MM, Campargue C, Clastre M, Borderies G, Boudet A, Boudet AM (1994) Purification and characterization of cinnamoyl-coenzyme A:Nadp oxidoreductase in Eucalyptus gunnii. Plant Physiol 106(2):625–632. doi: 106/2/625 PubMedGoogle Scholar
  11. 11.
    Lacombe E, Hawkins S, Van Doorsselaere J, Piquemal J, Goffner D, Poeydomenge O, Boudet AM, Grima-Pettenati J (1997) Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships. Plant J 11(3):429–441. doi: 10.1046/j.1365-313X.1997.11030429.x CrossRefPubMedGoogle Scholar
  12. 12.
    Piquemal J, Lapierre C, Myton K, O’connell A, Schuch W, Grimapettenati J, Boudet A (1998) Down-regulation of cinnamoyl-CoA reductase induces significant changes of lignin profiles in transgenic tobacco plants. Plant J 13(1):71–83. doi: 10.1046/j.1365-313X.1998.00014.x CrossRefGoogle Scholar
  13. 13.
    Luderitz T, Grisebach H (1981) Enzymic synthesis of lignin precursors. Comparison of cinnamoyl-CoA reductase and cinnamyl alcohol:Nadp+ dehydrogenase from spruce (Picea abies L.) and soybean (Glycine max L.). Eur J Biochem 119(1):115–124. doi: 10.1111/j.1432-1033.1981.tb05584.x CrossRefPubMedGoogle Scholar
  14. 14.
    Sarni F, Grand C, Boudet AM (1984) Purification and properties of cinnamoyl-CoA reductase and cinnamyl alcohol dehydrogenase from poplar stems (Populus x euramericana). Eur J Biochem 139(2):259–265. doi: 10.1111/j.1432-1033.1984.tb08002.x CrossRefPubMedGoogle Scholar
  15. 15.
    Leple J, Grima-Pettenati J, Montagu M, Boerjan W (1998) A cDNA encoding cinnamoyl-CoA reductase from Populus trichocarpa. Plant Physiol 117:1126Google Scholar
  16. 16.
    Pichon M, Courbou I, Beckert M, Boudet A, Grima-Pettenati J (1998) Cloning and characterization of two maize cDNAs encoding cinnamoyl-CoA reductase (ccr) and differential expression of the corresponding genes. Plant Mol Biol 38(4):671CrossRefPubMedGoogle Scholar
  17. 17.
    Selman-Housein G, Lopez M, Hernandez D, Civardi L, Miranda F, Rigau J, Puigdomenech P (1999) Molecular cloning of cDNAs coding for three sugarcane enzymes involved in lignification. Plant Sci (Limerick) 143(2):163–171CrossRefGoogle Scholar
  18. 18.
    Lauvergeat V, Lacomme C, Lacombe E, Lasserre E, Roby D, Grima-Pettenati J (2001) Two cinnamoyl-CoA reductase (ccr) genes from Arabidopsis thaliana are differentially expressed during development and in response to infection with pathogenic bacteria. Phytochemistry 57(7):1187–1195. doi: 10.1016/S0031-9422(01)00053-X CrossRefPubMedGoogle Scholar
  19. 19.
    Lin Z, Ma Q, Ma M (2001) Cloning and expression analysis of two wheat cDNAs encoding cinnamoyl-CoA reductase. Acta Bot Sin 43:1043Google Scholar
  20. 20.
    Wang Y, Qiao CZ, Liu S, Hang HM (2000) Evaluation on antiendotoxic action and antiviral action in vitro of tetraploid Isatis indigotica. Zhongguo Zhong Yao Za Zhi 25(6):327–329PubMedGoogle Scholar
  21. 21.
    Jaakola L, Pirttila AM, Halonen M, Hohtola A (2001) Isolation of high quality rna from bilberry (Vaccinium myrtillus L.) fruit. Mol Biotechnol 19(2):201–203. doi: 10.1385/MB:19:2:201 Google Scholar
  22. 22.
    Doyle J, Doyle J (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19(1):11–15Google Scholar
  23. 23.
    Frohman MA, Dush MK, Martin GR (1988) Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA 85(23):8998–9002CrossRefPubMedGoogle Scholar
  24. 24.
    Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425PubMedGoogle Scholar
  25. 25.
    Thompson JD, Higgins DG, Gibson TJ (1994) Clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680CrossRefPubMedGoogle Scholar
  26. 26.
    Kumar S, Tamura K, Jakobsen IB, Nei M (2001) Mega2: molecular evolutionary genetics analysis software. Bioinformatics 17(12):1244–1245CrossRefPubMedGoogle Scholar
  27. 27.
    Combet C, Blanchet C, Geourjon C, Deleage G (2000) Nps@: network protein sequence analysis. Trends Biochem Sci 25(3):147–150. doi: 10.1016/S0968-0004(99)01540-6 CrossRefPubMedGoogle Scholar
  28. 28.
    Arnold K, Bordoli L, Kopp J, Schwede T (2006) The swiss-model workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22(2):195–201. doi: 10.1093/bioinformatics/bti770 CrossRefPubMedGoogle Scholar
  29. 29.
    Schwede T, Kopp J, Guex N, Peitsch MC (2003) Swiss-model: an automated protein homology-modeling server. Nucleic Acids Res 31(13):3381–3385. doi: 10.1093/nar/gkg520 CrossRefPubMedGoogle Scholar
  30. 30.
    Guex N, Peitsch M (1997) Swiss-model and the swiss-pdbviewer: an environment for comparative protein modeling. Electrophoresis 18(15):2714–2723. doi: 10.1002/elps.1150181505 CrossRefPubMedGoogle Scholar
  31. 31.
    Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (place) database: 1999. Nucleic Acids Res 27(1):297–300CrossRefPubMedGoogle Scholar
  32. 32.
    Bauer AJ, Rayment I, Frey PA, Holden HM (1992) The molecular structure of UDP-galactose 4-epimerase from Escherichia coli determined at 2.5 a resolution. Proteins 12(4):372–381. doi: 10.1002/prot.340120409 CrossRefPubMedGoogle Scholar
  33. 33.
    Yong B, Wei G, Tianyun L, Yuxian Z (2003) Cloning and expressional analyses of a cinnamoyl CoA reductase cDNA from rice seedlings. Chin Sci Bull 48(20):2221–2225Google Scholar
  34. 34.
    Lipphardt S, Brettschneider R, Kreuzaler F, Schell J, Dangl JL (1988) Uv-inducible transient expression in parsley protoplasts identifies regulatory cis-elements of a chimeric Antirrhinum majus chalcone synthase gene. EMBO J 7(13):4027–4033PubMedGoogle Scholar
  35. 35.
    Choi H, Hong J, Ha J, Kang J, Kim SY (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275(3):1723–1730CrossRefPubMedGoogle Scholar
  36. 36.
    Durner J, Shah J, Klessig D (1997) Salicylic acid and disease resistance in plants. Trends Plant Sci 2(7):266–274. doi: 10.1016/S1360-1385(97)86349-2 CrossRefGoogle Scholar
  37. 37.
    Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7(7):1085–1097. doi: 10.1105/tpc.7.7.1085 CrossRefPubMedGoogle Scholar
  38. 38.
    Wasternack C, Hause B (2002) Jasmonates and octadecanoids: signals in plant stress responses and development. Prog Nucleic Acid Res Mol Biol 72:165–221CrossRefPubMedGoogle Scholar
  39. 39.
    Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct Integr Genomics 2(6):282–291. doi: 10.1007/s10142-002-0070-6 CrossRefPubMedGoogle Scholar
  40. 40.
    Ostergaard L, Lauvergeat VV, Naested H, Mattsson O, Mundy J (2001) Two differentially regulated Arabidopsis genes define a new branch of the DFR superfamily. Plant Sci 160(3):463–472. doi: 10.1016/S0168-9452(00)00407-6 CrossRefPubMedGoogle Scholar
  41. 41.
    Wasternack C, Parthier B (1997) Jasmonate-signalled plant gene expression. Trends Plant Sci 2(8):302–307. doi: 10.1016/S1360-1385(97)89952-9 CrossRefGoogle Scholar
  42. 42.
    Farmer EE, Ryan CA (1992) Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4(2):129–134CrossRefPubMedGoogle Scholar
  43. 43.
    Creelman RA, Mullet JE (1995) Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc Natl Acad Sci USA 92(10):4114–4119CrossRefPubMedGoogle Scholar
  44. 44.
    Farmer EE, Johnson RR, Ryan CA (1992) Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid. Plant Physiol 98(3):995–1002CrossRefPubMedGoogle Scholar
  45. 45.
    Blechert S, Brodschelm W, Holder S, Kammerer L, Kutchan TM, Mueller MJ, Xia ZQ, Zenk MH (1995) The octadecanoic pathway: signal molecules for the regulation of secondary pathways. Proc Natl Acad Sci USA 92(10):4099–4105CrossRefPubMedGoogle Scholar
  46. 46.
    Nojiri H, Sugimori M, Yamane H, Nishimura Y, Yamada A, Shibuya N, Kodama O, Murofushi N, Omori T (1996) Involvement of jasmonic acid in elicitor-induced phytoalexin production in suspension-cultured rice cells. Plant Physiol 110(2):387–392PubMedGoogle Scholar
  47. 47.
    Tamogami S, Rakwal R, Kodama O (1997) Phytoalexin production by amino acid conjugates of jasmonic acid through induction of naringenin-7-o-methyltransferase, a key enzyme on phytoalexin biosynthesis in rice (Oryza sativa L.). FEBS Lett 401(2–3):239–242. doi: 10.1016/S0014-5793(96)01482-2 CrossRefPubMedGoogle Scholar
  48. 48.
    Kuroyanagi M, Arakawa T, Mikami Y, Yoshida K, Kawahar N, Hayashi T, Ishimaru H (1998) Phytoalexins from hairy roots of Hyoscyamus albus treated with methyl jasmonate. J Nat Prod 61(12):1516–1519. doi: 10.1021/np980214i CrossRefPubMedGoogle Scholar
  49. 49.
    Muhlenweg A, Melzer M, Li SM, Heide L (1998) 4-Hydroxybenzoate 3-geranyltransferase from Lithospermum erythrorhizon: purification of a plant membrane-bound prenyltransferase. Planta 205(3):407–413. doi: 10.1007/s004250050337 CrossRefPubMedGoogle Scholar
  50. 50.
    Li J, Ou-Lee TM, Raba R, Amundson RG, Last RL (1993) Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell 5(2):171–179. doi: 10.1105/tpc.5.2.171 CrossRefPubMedGoogle Scholar
  51. 51.
    Lois R (1994) Accumulation of uv-absorbing flavonoids induced by UV-B radiation in Ambidopsis thaliana L. Planta 194(4):498–503. doi: 10.1007/BF00714462 CrossRefGoogle Scholar
  52. 52.
    Skriver K, Olsen FL, Rogers JC, Mundy J (1991) Cis-acting DNA elements responsive to gibberellin and its antagonist abscisic acid. Proc Natl Acad Sci USA 88(16):7266–7270CrossRefPubMedGoogle Scholar
  53. 53.
    Mason HS, DeWald DB, Mullet JE (1993) Identification of a methyl jasmonate-responsive domain in the soybean vspB promoter. Plant Cell 5(3):241–251. doi: 10.1105/tpc.5.3.2415/3/241 CrossRefPubMedGoogle Scholar
  54. 54.
    Chabannes M, Ruel K, Yoshinaga A, Chabbert B, Jauneau A, Joseleau JP, Boudet AM (2001) In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels. Plant J 28(3):271–282. doi: 10.1046/j.1365-313X.2001.01159.x CrossRefPubMedGoogle Scholar
  55. 55.
    Goujon T, Ferret V, Mila I, Pollet B, Ruel K, Burlat V, Joseleau JP, Barriere Y, Lapierre C, Jouanin L (2003) Down-regulation of the AtCCR1 gene in Arabidopsis thaliana: effects on phenotype, lignins and cell wall degradability. Planta 217(2):218–228. doi: 10.1007/s00425-003-0987-6 PubMedGoogle Scholar
  56. 56.
    Xiao Y, Yu X, Chen J, Di P, Chen W, Zhang L (2010) IiSDD1, a gene responsive to autopolyploidy and environmental factors in Isatis indigotica. Mol Biol Rep 37(2):987–994. doi: 10.1007/s11033-009-9776-z CrossRefPubMedGoogle Scholar
  57. 57.
    Qiao C, Wu M, Dai F, Cui X, Li L (1989) Studies on polyploid breeding of Isatis indigotica Fort. Acta Bot Sin 31(9):678–683Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of PharmacyChangzheng Hospital, Second Military Medical UniversityShanghaiChina
  2. 2.Department of PharmacognosySchool of Pharmacy, Second Military Medical UniversityShanghaiChina
  3. 3.Department of PharmacyThe 118th Hospital of PLAWenzhouChina
  4. 4.Modern Research Center for Traditional Chinese MedicineSecond Military Medical UniversityShanghaiChina
  5. 5.Department of Plant SciencesUniversity of CaliforniaDavisUSA

Personalised recommendations