Skip to main content
Log in

Isolation and characterization of a gene encoding cinnamoyl-CoA reductase from Isatis indigotica Fort.

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

A novel cinnamoyl-CoA reductase gene, designated as Iiccr (GenBank Accession No. GQ872418) was cloned from Isatis indigotica Fort. The full-length cDNA of Iiccr was 1368 bp with an ORF of 1026 bp that putatively encoded a polypeptide of 341 amino acids, with a predicted molecular mass of 37.50 kDa. The deduced amino acid sequence of IiCCR shared high homology with other known CCRs. No intron was detected in the genomic sequence of Iiccr. Southern-blot analysis revealed that Iiccr was a high-copy gene and real-time quantitative PCR analysis indicated that Iiccr was constitutively expressed in roots, stems and leaves of I. indigotica, with the highest expression level in roots. The results from treatment experiments using different signaling components for plant defense responses including methyl jasmonate (MeJA), gibberellins (GA3), abscisic acid (ABA) and ultraviolet-B revealed that expression of IiCCR had a prominent diversity. The full-length of ORF was sub-cloned into prokaryotic expression vector pET32a(+), which was then transferred into E. coli BL21(DE3). The recombinant protein had high expression level in E. coli BL21(DE3) with IPTG induction. A 2.6 kb long promoter sequence was isolated and its putative regulatory elements and potential specific transcription factor binding sites were analyzed. This study will enable us to further understand the role of IiCCR in the synthesis of phenylpropanoid compounds in I. indigotica Fort. at the molecular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ORF:

Open reading framed

RACE:

Rapid amplification of cDNA ends

PCR:

Polymerase chain reaction

IPTG:

Isopropyl β-d-1-thiogalactopyranoside

References

  1. Bayindir U, Alfermann AW, Fuss E (2008) Hinokinin biosynthesis in linum corymbulosum reichenb. Plant J 55(5):810–820. doi:TPJ355810.1111/j.1365-313X.2008.03558.x

    Article  CAS  PubMed  Google Scholar 

  2. Ríos JL, Giner RM, Prieto JM (2002) New findings on the bioactivity of lignans. In: Attaur R (ed) Studies in natural products chemistry, vol 26, Part 7. Elsevier, Amsterdam, pp 183–292

    Google Scholar 

  3. Whetten RW, MacKay JJ, Sederoff RR (1998) Recent advances in understanding lignin biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 49:585–609. doi:10.1146/annurev.arplant.49.1.585

    Article  CAS  PubMed  Google Scholar 

  4. Baucher M, Monties B, Montagu M, Boerjan W (1998) Biosynthesis and genetic engineering of lignin. Crit Rev Plant Sci 17(2):125–197. doi:1080/07352689891304203

    Article  CAS  Google Scholar 

  5. Goujon T, Sibout R, Eudes A, MacKay J, Jouanin L (2003) Genes involved in the biosynthesis of lignin precursors in Arabidopsis thaliana. Plant Physiol Biochem 41(8):677–687. doi:10.1016/S0981-9428(03)00095-0

    Article  CAS  Google Scholar 

  6. Rogers LA, Campbell MM (2004) The genetic control of lignin deposition during plant growth and development. New Phytol 164(1):17–30. doi:10.1111/j.1469-8137.2004.01143.x

    Article  CAS  Google Scholar 

  7. Humphreys JM, Chapple C (2002) Rewriting the lignin roadmap. Curr Opin Plant Biol 5(3):224–229. doi:10.1016/S1369-5266(02)00257-1

    Article  CAS  PubMed  Google Scholar 

  8. Peter G, Neale D (2004) Molecular basis for the evolution of xylem lignification. Curr Opin Plant Biol 7(6):737–742. doi:10.1016/j.pbi.2004.09.002

    Article  CAS  PubMed  Google Scholar 

  9. Rogers L, Campbell M (2004) The genetic control of lignin deposition during plant growth and development. New Phytol 17–30. doi:10.1111/j.1469-8137.2004.01143.x

  10. Goffner D, Campbell MM, Campargue C, Clastre M, Borderies G, Boudet A, Boudet AM (1994) Purification and characterization of cinnamoyl-coenzyme A:Nadp oxidoreductase in Eucalyptus gunnii. Plant Physiol 106(2):625–632. doi:106/2/625

    CAS  PubMed  Google Scholar 

  11. Lacombe E, Hawkins S, Van Doorsselaere J, Piquemal J, Goffner D, Poeydomenge O, Boudet AM, Grima-Pettenati J (1997) Cinnamoyl CoA reductase, the first committed enzyme of the lignin branch biosynthetic pathway: cloning, expression and phylogenetic relationships. Plant J 11(3):429–441. doi:10.1046/j.1365-313X.1997.11030429.x

    Article  CAS  PubMed  Google Scholar 

  12. Piquemal J, Lapierre C, Myton K, O’connell A, Schuch W, Grimapettenati J, Boudet A (1998) Down-regulation of cinnamoyl-CoA reductase induces significant changes of lignin profiles in transgenic tobacco plants. Plant J 13(1):71–83. doi:10.1046/j.1365-313X.1998.00014.x

    Article  CAS  Google Scholar 

  13. Luderitz T, Grisebach H (1981) Enzymic synthesis of lignin precursors. Comparison of cinnamoyl-CoA reductase and cinnamyl alcohol:Nadp+ dehydrogenase from spruce (Picea abies L.) and soybean (Glycine max L.). Eur J Biochem 119(1):115–124. doi:10.1111/j.1432-1033.1981.tb05584.x

    Article  CAS  PubMed  Google Scholar 

  14. Sarni F, Grand C, Boudet AM (1984) Purification and properties of cinnamoyl-CoA reductase and cinnamyl alcohol dehydrogenase from poplar stems (Populus x euramericana). Eur J Biochem 139(2):259–265. doi:10.1111/j.1432-1033.1984.tb08002.x

    Article  CAS  PubMed  Google Scholar 

  15. Leple J, Grima-Pettenati J, Montagu M, Boerjan W (1998) A cDNA encoding cinnamoyl-CoA reductase from Populus trichocarpa. Plant Physiol 117:1126

    Google Scholar 

  16. Pichon M, Courbou I, Beckert M, Boudet A, Grima-Pettenati J (1998) Cloning and characterization of two maize cDNAs encoding cinnamoyl-CoA reductase (ccr) and differential expression of the corresponding genes. Plant Mol Biol 38(4):671

    Article  CAS  PubMed  Google Scholar 

  17. Selman-Housein G, Lopez M, Hernandez D, Civardi L, Miranda F, Rigau J, Puigdomenech P (1999) Molecular cloning of cDNAs coding for three sugarcane enzymes involved in lignification. Plant Sci (Limerick) 143(2):163–171

    Article  CAS  Google Scholar 

  18. Lauvergeat V, Lacomme C, Lacombe E, Lasserre E, Roby D, Grima-Pettenati J (2001) Two cinnamoyl-CoA reductase (ccr) genes from Arabidopsis thaliana are differentially expressed during development and in response to infection with pathogenic bacteria. Phytochemistry 57(7):1187–1195. doi:10.1016/S0031-9422(01)00053-X

    Article  CAS  PubMed  Google Scholar 

  19. Lin Z, Ma Q, Ma M (2001) Cloning and expression analysis of two wheat cDNAs encoding cinnamoyl-CoA reductase. Acta Bot Sin 43:1043

    CAS  Google Scholar 

  20. Wang Y, Qiao CZ, Liu S, Hang HM (2000) Evaluation on antiendotoxic action and antiviral action in vitro of tetraploid Isatis indigotica. Zhongguo Zhong Yao Za Zhi 25(6):327–329

    CAS  PubMed  Google Scholar 

  21. Jaakola L, Pirttila AM, Halonen M, Hohtola A (2001) Isolation of high quality rna from bilberry (Vaccinium myrtillus L.) fruit. Mol Biotechnol 19(2):201–203. doi:10.1385/MB:19:2:201

    Google Scholar 

  22. Doyle J, Doyle J (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19(1):11–15

    Google Scholar 

  23. Frohman MA, Dush MK, Martin GR (1988) Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc Natl Acad Sci USA 85(23):8998–9002

    Article  CAS  PubMed  Google Scholar 

  24. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  25. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  CAS  PubMed  Google Scholar 

  26. Kumar S, Tamura K, Jakobsen IB, Nei M (2001) Mega2: molecular evolutionary genetics analysis software. Bioinformatics 17(12):1244–1245

    Article  CAS  PubMed  Google Scholar 

  27. Combet C, Blanchet C, Geourjon C, Deleage G (2000) Nps@: network protein sequence analysis. Trends Biochem Sci 25(3):147–150. doi:10.1016/S0968-0004(99)01540-6

    Article  CAS  PubMed  Google Scholar 

  28. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The swiss-model workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22(2):195–201. doi:10.1093/bioinformatics/bti770

    Article  CAS  PubMed  Google Scholar 

  29. Schwede T, Kopp J, Guex N, Peitsch MC (2003) Swiss-model: an automated protein homology-modeling server. Nucleic Acids Res 31(13):3381–3385. doi:10.1093/nar/gkg520

    Article  CAS  PubMed  Google Scholar 

  30. Guex N, Peitsch M (1997) Swiss-model and the swiss-pdbviewer: an environment for comparative protein modeling. Electrophoresis 18(15):2714–2723. doi:10.1002/elps.1150181505

    Article  CAS  PubMed  Google Scholar 

  31. Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (place) database: 1999. Nucleic Acids Res 27(1):297–300

    Article  CAS  PubMed  Google Scholar 

  32. Bauer AJ, Rayment I, Frey PA, Holden HM (1992) The molecular structure of UDP-galactose 4-epimerase from Escherichia coli determined at 2.5 a resolution. Proteins 12(4):372–381. doi:10.1002/prot.340120409

    Article  CAS  PubMed  Google Scholar 

  33. Yong B, Wei G, Tianyun L, Yuxian Z (2003) Cloning and expressional analyses of a cinnamoyl CoA reductase cDNA from rice seedlings. Chin Sci Bull 48(20):2221–2225

    Google Scholar 

  34. Lipphardt S, Brettschneider R, Kreuzaler F, Schell J, Dangl JL (1988) Uv-inducible transient expression in parsley protoplasts identifies regulatory cis-elements of a chimeric Antirrhinum majus chalcone synthase gene. EMBO J 7(13):4027–4033

    CAS  PubMed  Google Scholar 

  35. Choi H, Hong J, Ha J, Kang J, Kim SY (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275(3):1723–1730

    Article  CAS  PubMed  Google Scholar 

  36. Durner J, Shah J, Klessig D (1997) Salicylic acid and disease resistance in plants. Trends Plant Sci 2(7):266–274. doi:10.1016/S1360-1385(97)86349-2

    Article  Google Scholar 

  37. Dixon RA, Paiva NL (1995) Stress-induced phenylpropanoid metabolism. Plant Cell 7(7):1085–1097. doi:10.1105/tpc.7.7.1085

    Article  CAS  PubMed  Google Scholar 

  38. Wasternack C, Hause B (2002) Jasmonates and octadecanoids: signals in plant stress responses and development. Prog Nucleic Acid Res Mol Biol 72:165–221

    Article  CAS  PubMed  Google Scholar 

  39. Seki M, Ishida J, Narusaka M, Fujita M, Nanjo T, Umezawa T, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct Integr Genomics 2(6):282–291. doi:10.1007/s10142-002-0070-6

    Article  CAS  PubMed  Google Scholar 

  40. Ostergaard L, Lauvergeat VV, Naested H, Mattsson O, Mundy J (2001) Two differentially regulated Arabidopsis genes define a new branch of the DFR superfamily. Plant Sci 160(3):463–472. doi:10.1016/S0168-9452(00)00407-6

    Article  CAS  PubMed  Google Scholar 

  41. Wasternack C, Parthier B (1997) Jasmonate-signalled plant gene expression. Trends Plant Sci 2(8):302–307. doi:10.1016/S1360-1385(97)89952-9

    Article  Google Scholar 

  42. Farmer EE, Ryan CA (1992) Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4(2):129–134

    Article  CAS  PubMed  Google Scholar 

  43. Creelman RA, Mullet JE (1995) Jasmonic acid distribution and action in plants: regulation during development and response to biotic and abiotic stress. Proc Natl Acad Sci USA 92(10):4114–4119

    Article  CAS  PubMed  Google Scholar 

  44. Farmer EE, Johnson RR, Ryan CA (1992) Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid. Plant Physiol 98(3):995–1002

    Article  CAS  PubMed  Google Scholar 

  45. Blechert S, Brodschelm W, Holder S, Kammerer L, Kutchan TM, Mueller MJ, Xia ZQ, Zenk MH (1995) The octadecanoic pathway: signal molecules for the regulation of secondary pathways. Proc Natl Acad Sci USA 92(10):4099–4105

    Article  CAS  PubMed  Google Scholar 

  46. Nojiri H, Sugimori M, Yamane H, Nishimura Y, Yamada A, Shibuya N, Kodama O, Murofushi N, Omori T (1996) Involvement of jasmonic acid in elicitor-induced phytoalexin production in suspension-cultured rice cells. Plant Physiol 110(2):387–392

    CAS  PubMed  Google Scholar 

  47. Tamogami S, Rakwal R, Kodama O (1997) Phytoalexin production by amino acid conjugates of jasmonic acid through induction of naringenin-7-o-methyltransferase, a key enzyme on phytoalexin biosynthesis in rice (Oryza sativa L.). FEBS Lett 401(2–3):239–242. doi:10.1016/S0014-5793(96)01482-2

    Article  CAS  PubMed  Google Scholar 

  48. Kuroyanagi M, Arakawa T, Mikami Y, Yoshida K, Kawahar N, Hayashi T, Ishimaru H (1998) Phytoalexins from hairy roots of Hyoscyamus albus treated with methyl jasmonate. J Nat Prod 61(12):1516–1519. doi:10.1021/np980214i

    Article  CAS  PubMed  Google Scholar 

  49. Muhlenweg A, Melzer M, Li SM, Heide L (1998) 4-Hydroxybenzoate 3-geranyltransferase from Lithospermum erythrorhizon: purification of a plant membrane-bound prenyltransferase. Planta 205(3):407–413. doi:10.1007/s004250050337

    Article  CAS  PubMed  Google Scholar 

  50. Li J, Ou-Lee TM, Raba R, Amundson RG, Last RL (1993) Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell 5(2):171–179. doi:10.1105/tpc.5.2.171

    Article  CAS  PubMed  Google Scholar 

  51. Lois R (1994) Accumulation of uv-absorbing flavonoids induced by UV-B radiation in Ambidopsis thaliana L. Planta 194(4):498–503. doi:10.1007/BF00714462

    Article  CAS  Google Scholar 

  52. Skriver K, Olsen FL, Rogers JC, Mundy J (1991) Cis-acting DNA elements responsive to gibberellin and its antagonist abscisic acid. Proc Natl Acad Sci USA 88(16):7266–7270

    Article  CAS  PubMed  Google Scholar 

  53. Mason HS, DeWald DB, Mullet JE (1993) Identification of a methyl jasmonate-responsive domain in the soybean vspB promoter. Plant Cell 5(3):241–251. doi:10.1105/tpc.5.3.2415/3/241

    Article  CAS  PubMed  Google Scholar 

  54. Chabannes M, Ruel K, Yoshinaga A, Chabbert B, Jauneau A, Joseleau JP, Boudet AM (2001) In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels. Plant J 28(3):271–282. doi:10.1046/j.1365-313X.2001.01159.x

    Article  CAS  PubMed  Google Scholar 

  55. Goujon T, Ferret V, Mila I, Pollet B, Ruel K, Burlat V, Joseleau JP, Barriere Y, Lapierre C, Jouanin L (2003) Down-regulation of the AtCCR1 gene in Arabidopsis thaliana: effects on phenotype, lignins and cell wall degradability. Planta 217(2):218–228. doi:10.1007/s00425-003-0987-6

    CAS  PubMed  Google Scholar 

  56. Xiao Y, Yu X, Chen J, Di P, Chen W, Zhang L (2010) IiSDD1, a gene responsive to autopolyploidy and environmental factors in Isatis indigotica. Mol Biol Rep 37(2):987–994. doi:10.1007/s11033-009-9776-z

    Article  CAS  PubMed  Google Scholar 

  57. Qiao C, Wu M, Dai F, Cui X, Li L (1989) Studies on polyploid breeding of Isatis indigotica Fort. Acta Bot Sin 31(9):678–683

    Google Scholar 

Download references

Acknowledgments

This research was financially supported by National Natural Science Foundation of China (30900786); Modernization of traditional Chinese medicine foundation (08DZ1971502) and Domestic science and technology cooperation projects (10495801400, 10395820200), Shanghai Science and Technology Committee.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Zhang or Wansheng Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

The full-length cDNA sequence and deduced amino acid sequence of Iiccr. The start codon (ATG) is in italics and the stop codon (TGA) is in bold (JPG 398 kb)

Fig. S2

Alignment of the deduced amino acid sequences of IiCCR and other known plant CCRs. The completely identical residues and the conserved residues among the aligned sequences were black and gray shaded, respectively. The common signature CCR catalytic site and the putative NADP binding domain are boxed. IiCCR (I. indigotica, GQ872418); AtCCR (A. thaliana, AAL37194.1); RsCCR (R. sativus, BAC58030.1); TaCCR (Triticum aestivum, ABE01883.1); PtCCR (Pinus taeda, AAL47684.1); OsCCR (Oryza sativa, CAD21520.1) (JPG 367 kb)

Fig. S3

The secondary structure of the deduced IiCCR protein. Alpha helix, extended strand and random coil were represented by the longest, the second longest and the shortest vertical bars respectively (JPG 185 kb)

Fig. S4

The three-dimensional structure of the deduced of IiCCR protein established by homology-based modeling. The a-helix and b-sheet were indicated in red and blue, respectively. Turns and loops were indicated in silver (JPG 149 kb)

Fig. S5

Phylogenetic relationships of CCR proteins from different species. Sequences were identified by the names of species. Eucalyptus (Eucalyptus globulus, AAT74889.1); Corymbia (Corymbia citriodora subsp. variegata, ABQ95557.1); Codonopsis (Codonopsis lanceolata, BAE48787.1); Scutellaria (Scutellaria baicalensis, ACB45437.1); Solanum (Solanum tuberosum, AAN71761.1); Lycopersicon (Lycopersicon esculentum, AAY41880.1); Arabidopsis (A. thaliana, AAL37194.1); Raphanus (R. sativus, BAC58030.1); Isatis (I. indigotica, GQ872418); Triticum (T. aestivum, ABE01883.1); Zea (Zea mays, AAO42630.1); Oryza (O. sativa, CAD21520.1); Mesorhizobium (Mesorhizobium loti MAFF303099, NP_103432.1); Streptomyces (Streptomyces avermitilis MA-4680, NP_821682.1); Aspergillus (Aspergillus flavus NRRL3357, XP_002372662.1); Talaromyces (Talaromyces stipitatus ATCC 10500, XP_002486183.1) (JPG 88 kb)

Fig. S6

Iiccr promoter sequence. A 2.6 kb genomic DNA fragment flanking the 5′-end of the gene contains several putative regulatory elements including a TATA box (sequences are boxed), CAAT box (sequences are underlined) and Gbox (sequences are yellow background). Potential specific transcription factor binding sites were identified by PLACE. MYBST1 sites (sequences are red), MYBPZM sites (sequences are green). The deduced transcription factor binding sites by the computer-based TFSEARCH program are blue background (JPG 192 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Y., Di, P., Chen, J. et al. Isolation and characterization of a gene encoding cinnamoyl-CoA reductase from Isatis indigotica Fort.. Mol Biol Rep 38, 2075–2083 (2011). https://doi.org/10.1007/s11033-010-0333-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0333-6

Keywords

Navigation