Skip to main content

Advertisement

Log in

All-trans- and 9-cis-retinoic acids activate the human cyclooxynase-2 gene: a role for DR1 as RARE or RXRE

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The human COX-2 promoter contains a direct repeat 1 (DR1) which was shown to confer responsiveness to PPARs. We found that in AN3CA and F9 cells, this hCOX-2 DR1 mediates responsiveness to all-trans-retinoic acid (tRA) or 9-cis-retinoic acid (9cRA), but this effect was suppressed by PPARδ. Truncated PPARδ lacking the activation domain AF2 cannot suppress RA-induced activation of the hCOX-2 gene via DR1, suggesting that cofactor recruitment by AF2 is required for the suppression by PPARδ. Gel shift assay showed that PPAR/RXR, RARβ/RXR, and RXR/RXR, bind to hCOX-2 DR1, revealing the promiscuity of this DR1. Particularly, RXR homodimer was able to bind to this DR1 only in the presence of 9cRA. Our results established that tRA and 9cRA are potent inducers of hCOX-2 and that the hCOX-2 DR1 could either serve as RARE or RXRE depending on cellular contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

COX-2:

Cyclooxygenase-2

PPAR:

Peroxisome proliferator-activated receptor

RXR:

Retinoic acid receptor

tRA:

All-trans-retinoic acid

9cRA:

9-Cis-retinoic acid

DR1:

Direct repeat 1

cPGI:

Carbaprostacylin

References

  1. Dannenberg AJ, Lippman SM, Mann JR, Subbaramaiah K, DuBois RN (2005) Cyclooxygenase-2 and epidermal growth factor receptor: pharmacologic targets for chemoprevention. J Clin Oncol 23:254–266

    Article  CAS  PubMed  Google Scholar 

  2. Tsatsanis C, Androulidaki A, Venihaki M, Margioris AN (2006) Signalling networks regulating cyclooxygenase-2. Int J Biochem Cell Biol 38:1654–1661

    Article  CAS  PubMed  Google Scholar 

  3. Kang YJ, Wingerd BA, Arakawa T, Smith WL (2006) Cyclooxygenase-2 gene transcription in a macrophage model of inflammation. J Immunol 177:8111–8122

    CAS  PubMed  Google Scholar 

  4. Zhang X, Zhang J, Yang X, Han X (2007) Several transcription factors regulate COX-2 gene expression in pancreatic beta-cells. Mol Biol Rep 34:199–206

    Article  CAS  PubMed  Google Scholar 

  5. Meade EA, McIntyre TM, Zimmerman GA, Prescott SM (1999) Peroxisome proliferators enhance cyclooxygenase-2 expression in epithelial cells. J Biol Chem 274:8328–8334

    Article  CAS  PubMed  Google Scholar 

  6. Kalajdzic T, Faour WH, He QW, Fahmi H, Martel-Pelletier J, Pelletier JP, Di Battista JA (2002) Nimesulide, a preferential cyclooxygenase 2 inhibitor, suppresses peroxisome proliferator-activated receptor induction of cyclooxygenase 2 gene expression in human synovial fibroblasts: evidence for receptor antagonism. Arthritis Rheum 46:494–506

    Article  CAS  PubMed  Google Scholar 

  7. Mangelsdorf DJ, Evans RM (1995) The RXR heterodimers and orphan receptors. Cell 83:841–850

    Article  CAS  PubMed  Google Scholar 

  8. Zhang XK, Lehmann J, Hoffmann B, Dawson MI, Cameron J, Graupner G, Hermann T, Tran P, Pfahl M (1992) Homodimer formation of retinoid X receptor induced by 9-cis retinoic acid. Nature 358:587–591

    Article  CAS  PubMed  Google Scholar 

  9. Nakshatri H, Chambon P (1994) The directly repeated RG(G/T)TCA motifs of the rat and mouse cellular retinol-binding protein II genes are promiscuous binding sites for RAR, RXR, HNF-4, and ARP-1 homo- and heterodimers. J Biol Chem 269:890–902

    CAS  PubMed  Google Scholar 

  10. Han K, Song H, Moon I, Augustin R, Moley K, Rogers M, Lim H (2007) Utilization of DR1 as true RARE in regulating the Ssm, a novel retinoic acid-target gene in the mouse testis. J Endocrinol 192:539–551

    Article  CAS  PubMed  Google Scholar 

  11. Lim H, Gupta RA, Ma WG, Paria BC, Moller DE, Morrow JD, DuBois RN, Trzaskos JM, Dey SK (1999) Cyclo-oxygenase-2-derived prostacyclin mediates embryo implantation in the mouse via PPARdelta. Genes Dev 13:1561–1574

    Article  CAS  PubMed  Google Scholar 

  12. Lim HJ, Moon I, Han K (2004) Transcriptional cofactors exhibit differential preference toward peroxisome proliferator-activated receptors alpha and delta in uterine cells. Endocrinology 145:2886–2895

    Article  CAS  PubMed  Google Scholar 

  13. Rochette-Egly C, Chambon P (2001) F9 embryocarcinoma cells: a cell autonomous model to study the functional selectivity of RARs and RXRs in retinoid signaling. Histol Histopathol 16:909–922

    CAS  PubMed  Google Scholar 

  14. Gronemeyer H, Gustafsson JA, Laudet V (2004) Principles for modulation of the nuclear receptor superfamily. Nat Rev Drug Discov 3:950–964

    Article  CAS  PubMed  Google Scholar 

  15. Mader S, Leroy P, Chen JY, Chambon P (1993) Multiple parameters control the selectivity of nuclear receptors for their response elements. Selectivity and promiscuity in response element recognition by retinoic acid receptors and retinoid X receptors. J Biol Chem 268:591–600

    CAS  PubMed  Google Scholar 

  16. Chambon P (1996) A decade of molecular biology of retinoic acid receptors. FASEB J 10:940–954

    CAS  PubMed  Google Scholar 

  17. Mangelsdorf DJ, Umesono K, Kliewer SA, Borgmeyer U, Ong ES, Evans RM (1991) A direct repeat in the cellular retinol-binding protein type II gene confers differential regulation by RXR and RAR. Cell 66:555–561

    Article  CAS  PubMed  Google Scholar 

  18. Durand B, Saunders M, Leroy P, Leid M, Chambon P (1992) All-trans and 9-cis retinoic acid induction of CRABPII transcription is mediated by RAR-RXR heterodimers bound to DR1 and DR2 repeated motifs. Cell 71:73–85

    Article  CAS  PubMed  Google Scholar 

  19. Kurokawa R, DiRenzo J, Boehm M, Sugarman J, Gloss B, Rosenfeld MG, Heyman RA, Glass CK (1994) Regulation of retinoid signalling by receptor polarity and allosteric control of ligand binding. Nature 371:528–531

    Article  CAS  PubMed  Google Scholar 

  20. Sanguedolce MV, Leblanc BP, Betz JL, Stunnenberg HG (1997) The promoter context is a decisive factor in establishing selective responsiveness to nuclear class II receptors. EMBO J 16:2861–2873

    Article  CAS  PubMed  Google Scholar 

  21. IJpenberg A, Tan NS, Gelman L, Kersten S, Seydoux J, Xu J, Metzger D, Canaple L, Chambon P, Wahli W, Desvergne B (2004) In vivo activation of PPAR target genes by RXR homodimers. EMBO J 23:2083–2091

    Article  CAS  PubMed  Google Scholar 

  22. Kliewer SA, Umesono K, Noonan DJ, Heyman RA, Evans RM (1992) Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature 358:771–774

    Article  CAS  PubMed  Google Scholar 

  23. Muerhoff AS, Griffin KJ, Johnson EF (1992) The peroxisome proliferator-activated receptor mediates the induction of CYP4A6, a cytochrome P450 fatty acid omega-hydroxylase, by clofibric acid. J Biol Chem 267:19051–19053

    CAS  PubMed  Google Scholar 

  24. DiRenzo J, Soderstrom M, Kurokawa R, Ogliastro MH, Ricote M, Ingrey S, Horlein A, Rosenfeld MG, Glass CK (1997) Peroxisome proliferator-activated receptors and retinoic acid receptors differentially control the interactions of retinoid X receptor heterodimers with ligands, coactivators, and corepressors. Mol Cell Biol 17:2166–2176

    CAS  PubMed  Google Scholar 

  25. Shaw N, Elholm M, Noy N (2003) Retinoic acid is a high affinity selective ligand for the peroxisome proliferator-activated receptor beta/delta. J Biol Chem 278:41589–41592

    Article  CAS  PubMed  Google Scholar 

  26. Jiang YJ, Xu TR, Lu B, Mymin D, Kroeger EA, Dembinski T, Yang X, Hatch GM, Choy PC (2003) Cyclooxygenase expression is elevated in retinoic acid-differentiated U937 cells. Biochim Biophys Acta 1633:51–60

    CAS  PubMed  Google Scholar 

  27. Hunter J, Kassam A, Winrow CJ, Rachubinski RA, Capone JP (1996) Crosstalk between the thyroid hormone and peroxisome proliferator-activated receptors in regulating peroxisome proliferator-responsive genes. Mol Cell Endocrinol 116:213–221

    Article  CAS  PubMed  Google Scholar 

  28. Keller H, Givel F, Perroud M, Wahli W (1995) Signaling cross-talk between peroxisome proliferator-activated receptor/retinoid X receptor and estrogen receptor through estrogen response elements. Mol Endocrinol 9:794–804

    Article  CAS  PubMed  Google Scholar 

  29. Strickland S, Mahdavi V (1978) The induction of differentiation in teratocarcinoma stem cells by retinoic acid. Cell 15:393–403

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by National Research Foundation of Korea Grant funded by the Korean Government (313-2008-2-C00642). Authors thank members of the Lim laboratory for various technical supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunjung J. Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, K., Moon, I. & Lim, H.J. All-trans- and 9-cis-retinoic acids activate the human cyclooxynase-2 gene: a role for DR1 as RARE or RXRE. Mol Biol Rep 38, 833–840 (2011). https://doi.org/10.1007/s11033-010-0173-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0173-4

Keywords

Navigation