Molecular Biology Reports

, Volume 38, Issue 1, pp 657–666 | Cite as

Heterologous expression of ApGSMT2 and ApDMT2 genes from Aphanothece halophytica enhanced drought tolerance in transgenic tobacco

  • Ying He
  • Chunmei He
  • Lihua Li
  • Zhili Liu
  • Aifang Yang
  • Juren Zhang


The glycine-methylation biosynthetic pathway of glycinebetaine (GB) has been investigated, but only a few studies on GB accumulation in transgenic higher plants have utilized this pathway. In this study, two methyltransferase genes named ApGSMT2 and ApDMT2, encoding proteins catalyzing GB biosynthesis from glycine, were cloned from a relative strain of Aphanothece halophytica. The potential roles of ApGSMT2 and ApDMT2 in GB synthesis were first examined in transgenic Escherichia coli, which had increased levels of GB and improved salt tolerance. Then ApGSMT2 and ApDMT2 were transferred into tobacco. Compared with transgenic tobacco expressing betA, transgenic tobacco co-expressing ApGSMT2 and ApDMT2 accumulated more GB and exhibited enhanced drought resistance with better germination performance, higher relative water content, less cell membrane damage and better photosynthetic capacity under drought stress. We concluded that the ApGSMT2 and ApDMT2 genes cloned in this study will be very useful for engineering GB-accumulating transgenic plants with enhanced drought resistance.


Co-expressing ApGSMT2 and ApDMT2 Drought tolerance Glycinebetaine Tobacco 



The authors thank Dr. Roberta Greenwood (Shandong University, China) for manuscript writing and helpful advice. This research was supported by Hi-Tech Research and Development (863) Program of China (2007AA10Z175) and National Key Technologies R&D Program (2007BAD31B01).

Supplementary material

11033_2010_152_MOESM1_ESM.doc (3.2 mb)
Supplementary material 1 (DOC 3313 kb)


  1. 1.
    Boyer JS (1982) Plant productivity and environment. Science 218:443–448CrossRefPubMedGoogle Scholar
  2. 2.
    Csonka LN, Hanson AD (1991) Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol 45:569–606CrossRefPubMedGoogle Scholar
  3. 3.
    Garcia-Perez A, Burg MB (1991) Renal medullary organic osmolytes. Phys Rev 71:1081–1115Google Scholar
  4. 4.
    Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu Rev Plant Physiol Plant Mol Biol 44:357–384CrossRefGoogle Scholar
  5. 5.
    Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111CrossRefPubMedGoogle Scholar
  6. 6.
    Zhao Y, Aspinall D, Paleg LG (1992) Protection of membrane integrity in Medicago sativa L. by glycinebetaine against the effect of freezing. J Plant Physiol 140:541–543Google Scholar
  7. 7.
    Papageorgiou GC, Murata N (1995) The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem II complex. Photosynth Res 44:243–252CrossRefGoogle Scholar
  8. 8.
    Ganesan B, Buddhan S, Anandan R, Sivakumar R, AnbinEzhilan R (2010) Antioxidant defense of betaine against isoprenaline-induced myocardial infarction in rats. Mol Biol Rep 37:1319–1327CrossRefPubMedGoogle Scholar
  9. 9.
    Quan R, Shang M, Zhang H, Zhao Y, Zhang J (2004) Improved chilling tolerance by transformation with betA gene for the enhancement of glycinebetaine synthesis in maize. Plant Sci 166:141–149CrossRefGoogle Scholar
  10. 10.
    Quan R, Shang M, Zhang H, Zhao Y, Zhang J (2004) Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnol J 2:477–486CrossRefPubMedGoogle Scholar
  11. 11.
    Lv S, Yang A, Zhang K, Wang L, Zhang J (2007) Increase of glycinebetaine synthesis improves drought tolerance in cotton. Mol Breed 20:233–248CrossRefGoogle Scholar
  12. 12.
    Su J, Hirji R, Zhang L, He C, Selvaraj G, Wu R (2006) Evaluation of the stress-inducible production of choline oxidase in transgenic rice as a strategy for producing the stress-protectant glycine betaine. J Exp Bot 57:1129–1135CrossRefPubMedGoogle Scholar
  13. 13.
    Xing W, Rajashekar CB (2001) Glycine betaine involvement in freezing tolerance and water stress in Arabidopsis thaliana. Environ Exp Bot 46:21–28CrossRefPubMedGoogle Scholar
  14. 14.
    Yang X, Wen X, Gong H, Lu Q, Yang Z, Tang Y, Liang Z, Lu C (2007) Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco plants. Planta 225:719–733CrossRefPubMedGoogle Scholar
  15. 15.
    Ikuta S, Imamura S, Misaki H, Horiuti Y (1977) Purification and characterization of choline oxidase from Arthrobacter globiformis. J Biochem 82:1741–1749PubMedGoogle Scholar
  16. 16.
    Wilken DR, McMacken ML, Rodriquez A (1970) Choline and betaine aldehyde oxidation by rat liver mitochondria. Biochim Biophys Acta 216:305–317CrossRefPubMedGoogle Scholar
  17. 17.
    Chen TH, Murata N (2008) Glycinebetaine: an effective protectant against abiotic stress in plants. Trends Plant Sci 13:499–505CrossRefPubMedGoogle Scholar
  18. 18.
    Lai MC, Yang DR, Chuang MJ (1999) Regulatory factors associated with synthesis of the osmolyte glycine betaine in the halophilic methanoarchaeon Methanohalophilus portucalensis. Appl Environ Microbiol 2:828–833Google Scholar
  19. 19.
    Nyyssölä A, Kerovuo J, Kaukinen P, von Weymarn N, Reinikainen T (2000) Extreme halophiles synthesize betaine from glycine by methylation. J Biol Chem 29:22196–22201CrossRefGoogle Scholar
  20. 20.
    Waditee R, Tanaka Y, Aoki K, Hibino T, Jikuya H, Takano J, Takabe T, Takabe T (2003) Isolation and functional characterization of N-methyltransferases that catalyze betaine synthesis from glycine in a halotolerant photosynthetic organism Aphanothece halophytica. J Biol Chem 7:4932–4942CrossRefGoogle Scholar
  21. 21.
    Waditee R, Bhuiyan MN, Rai V, Aoki K, Tanaka Y, Hibino T, Suzuki S, Takano J, Jagendorf AT, Takabe T, Takabe T (2005) Genes for direct methylation of glycine provide high levels of glycinebetaine and abiotic-stress tolerance in Synechococcus and Arabidopsis. Proc Natl Acad Sci USA 102:1318–1323CrossRefPubMedGoogle Scholar
  22. 22.
    Kishitani S, Watanabe K, Yasuda S, Arakawa K, Takabe T (1994) Accumulation of glycinebetaine during cold acclimation and freezing tolerance in leaves of winter and spring barley plants. Plant cell Environ 17:89–95CrossRefGoogle Scholar
  23. 23.
    McNeil SD, Nuccio ML, Ziemak MJ, Hanson AD (2001) Enhanced synthesis of choline and glycine betaine in transgenic tobacco plants that overexpress phosphoethanolamine N-methyltransferase. Proc Natl Acad Sci USA 98:10001–10005CrossRefPubMedGoogle Scholar
  24. 24.
    Hibino T, Waditee R, Araki E, Ishikawa H, Aoki K, Tanaka Y, Takabe T (2002) Functional characterization of choline monooxygenase, an enzyme for betaine synthesis in plants. J Biol Chem 277:41352–41360CrossRefPubMedGoogle Scholar
  25. 25.
    Waditee R, Bhuiyan NH, Hirata E, Hibino T, Tanaka Y, Shikata M, Takabe T (2007) Metabolic engineering for betaine accumulation in microbes and plants. J Biol Chem 282:34185–34193CrossRefPubMedGoogle Scholar
  26. 26.
    Duan X, Song Y, Yang A, Zhang J (2009) The transgene pyramiding tobacco with betaine synthesis and heterologous expression of AtNHX1 is more tolerant to salt stress than either of the tobacco lines with betaine synthesis or AtNHX1. Physiol Plant 135:281–295CrossRefPubMedGoogle Scholar
  27. 27.
    Rippka R, Deruelles J, Waterbury JB, Herman M, Stanier RY (1979) Genetics assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61Google Scholar
  28. 28.
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882CrossRefPubMedGoogle Scholar
  29. 29.
    Bennett-Lovsey RM, Herbert AD, Sternberg MJ, Kelley LA (2008) Exploring the extremes of sequence/structure space with ensemble fold recognition in the program Phyre. Proteins 70:611–625CrossRefPubMedGoogle Scholar
  30. 30.
    Xu J, Tian YS, Peng RH, Xiong AS, Zhu B, Hou XL, Yao QH (2010) Cyanobacteria MT gene SmtA enhance zinc tolerance in Arabidopsis. Mol Biol Rep 37:1105–1110CrossRefPubMedGoogle Scholar
  31. 31.
    Premachandra GS, Soneoka H, Kanaya M, Ogata S (1991) Cell membrane stability and leaf surface wax content as affected by increasing water deficits in maize. J Exp Bot 42:167–171CrossRefGoogle Scholar
  32. 32.
    Katz JE, Dlakić M, Clarke S (2003) Automated identification of putative methyltransferases from genomic open reading frames. Mol Cell Proteomics 2:525–540PubMedGoogle Scholar
  33. 33.
    Cheng X, Roberts RJ (2001) AdoMet-dependent methylation, DNA methyltransferases and base flipping. Nucleic Acids Res 29:3784–3795CrossRefPubMedGoogle Scholar
  34. 34.
    Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58CrossRefGoogle Scholar
  35. 35.
    Zhu B, Xiong AS, Peng RH, Xu J, Jin XF, Meng XR, Yao QH (2009) Over-expression of ThpI from Choristoneura fumiferana enhances tolerance to cold in Arabidopsis. Mol Biol Rep 37:961–966CrossRefGoogle Scholar
  36. 36.
    Huang J, Hirji R, Adam L, Rozwadowski KL, Hammerlindl JK, Keller WA, Selvaraj G (2000) Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol 122:747–756CrossRefPubMedGoogle Scholar
  37. 37.
    Gabriel C (2000) Drought stress inhibits photosynthesis by decreasing stomatal aperture—not by affecting ATP synthesis. Trends Plant Sci 5:187–188CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Ying He
    • 1
  • Chunmei He
    • 1
  • Lihua Li
    • 1
  • Zhili Liu
    • 2
  • Aifang Yang
    • 1
  • Juren Zhang
    • 1
  1. 1.School of Life ScienceShandong UniversityJinanPeople’s Republic of China
  2. 2.Department of Biological Science and TechnologyNanjing UniversityNanjingPeople’s Republic of China

Personalised recommendations