Advertisement

Molecular Biology Reports

, Volume 38, Issue 1, pp 481–488 | Cite as

Silencing CX3CR1 production modulates the interaction between dendritic and endothelial cells

  • Xiaoyan Liu
  • Guohong Lu
  • Jinfang Shen
Article

Abstract

CX3CR1, an important chemokine receptor in dendritic cells (DCs), is linked to the progression of atherosclerotic plaques. However, the mechanism(s) determining the role of CX3CR1 in atherosclerosis have not been clearly elucidated. In this study, we developed DCs from monocytes of Sprague-Dawley (SD) rats in the presence of recombinant human granulocyte–macrophage colony-stimulating factor (GM-CSF) and recombinant human interleukin-4 (IL-4). The presence of recombinant human TNF-α and LPS forced the cells to mature. When compared to immature DCs, flow cytometry (FACS) analysis revealed that mature DCs display a sustained increase in the levels of CD11c, CD86, and CD80 expression. The expression of Fractalkine (FKN) in endothelial cells (ECs) contributes to the maturation of DCs and expression of CX3CR1. We revealed that mRNA expression levels of CX3CR1 in mature DCs are significantly higher than those of immature DCs (P < 0.001). Transfection of DCs with siRNA specific for the CX3CR1 gene resulted in potent suppression of gene expression and inhibition of interactions between DCs and ECs. Based on these data, we hypothesized that CX3CR1 contributes to the DC–EC interaction. CX3CR1 may serve as a new target molecule for increasing therapeutic interactions in atherosclerosis.

Keywords

Atherosclerosis Chemokine Epithelium Dendritic cell 

Notes

Acknowledgments

We thank Dr. Yanjun Bai for technical assistance. We express our thanks to Prof. Gaolin Liu for the critical reading of this manuscript.

Supplementary material

11033_2010_131_MOESM1_ESM.doc (28 kb)
Supplementary material 1 (DOC 27.5 KB)
11033_2010_131_MOESM2_ESM.tif (1.4 mb)
Supplementary material 2 (TIFF 1.41 MB)

References

  1. 1.
    Takahashi K, Takeya M, Sakashita N (2002) Multifunctional roles of macrophages in the development and progression of atherosclerosis in humans and experimental animals. Med Electron Microsc 35:179–203CrossRefPubMedGoogle Scholar
  2. 2.
    Li AC, Glass CK (2002) The macrophage foam cell as a target for therapeutic intervention. Nat Med 8:1235–1242CrossRefPubMedGoogle Scholar
  3. 3.
    Davignon J, Ganz P (2004) Role of endothelial dysfunction in atherosclerosis. Circulation 109:III27–III32PubMedGoogle Scholar
  4. 4.
    Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352:1685–1695CrossRefPubMedGoogle Scholar
  5. 5.
    Weber C (2008) Chemokines in atherosclerosis, thrombosis, and vascular biology. Arterioscler Thromb Vasc Biol 28:1896CrossRefPubMedGoogle Scholar
  6. 6.
    Libby P, Aikawa M, Jain MK (2006) Vascular endothelium and atherosclerosis. Handb Exp Pharmacol 176:285–306Google Scholar
  7. 7.
    Tedgui A, Mallat Z (2006) Cytokines in atherosclerosis: pathogenic and regulatory pathways. Physiol Rev 86:515–581CrossRefPubMedGoogle Scholar
  8. 8.
    Loppnow H, Werdan K, Buerke M (2008) Vascular cells contribute to atherosclerosis by cytokine- and innate-immunity-related inflammatory mechanisms. Innate Immun 14:63–87CrossRefPubMedGoogle Scholar
  9. 9.
    Rao LV, Pendurthi UR (2008) Factor VIIa binding to endothelial cell protein C receptor. Thromb Res 122 Suppl 1:S3–S6CrossRefPubMedGoogle Scholar
  10. 10.
    Galkina E, Harry BL, Ludwig A, Liehn EA, Sanders JM, Bruce A et al (2007) CXCR6 promotes atherosclerosis by supporting T-cell homing, interferon-gamma production, and macrophage accumulation in the aortic wall. Circulation 116:1801–1811CrossRefPubMedGoogle Scholar
  11. 11.
    Umehara H, Bloom ET, Okazaki T, Nagano Y, Yoshie O, Imai T (2004) Fractalkine in vascular biology: from basic research to clinical disease. Arterioscler Thromb Vasc Biol 24:34–40CrossRefPubMedGoogle Scholar
  12. 12.
    Cockwell P, Chakravorty SJ, Girdlestone J, Savage CO (2002) Fractalkine expression in human renal inflammation. J Pathol 196:85–90CrossRefPubMedGoogle Scholar
  13. 13.
    Imaizumi T, Yoshida H, Satoh K (2004) Regulation of CX3CL1/fractalkine expression in endothelial cells. J Atheroscler Thromb 11:15–21PubMedGoogle Scholar
  14. 14.
    Hatori K, Nagai A, Heisel R, Ryu JK, Kim SU (2002) Fractalkine and fractalkine receptors in human neurons and glial cells. J Neurosci Res 69:418–426CrossRefPubMedGoogle Scholar
  15. 15.
    Shulby SA, Dolloff NG, Stearns ME, Meucci O, Fatatis A (2004) CX3CR1-fractalkine expression regulates cellular mechanisms involved in adhesion, migration, and survival of human prostate cancer cells. Cancer Res 64:4693–4698CrossRefPubMedGoogle Scholar
  16. 16.
    Yoshikawa M, Nakajima T, Matsumoto K, Okada N, Tsukidate T, Iida M et al (2004) TNF-alpha and IL-4 regulate expression of fractalkine (CX3CL1) as a membrane-anchored proadhesive protein and soluble chemotactic peptide on human fibroblasts. FEBS Lett 561:105–110CrossRefPubMedGoogle Scholar
  17. 17.
    Sans M, Danese S, de la Motte C, de Souza HS, Rivera-Reyes BM, West GA et al (2007) Enhanced recruitment of CX3CR1 + T cells by mucosal endothelial cell-derived fractalkine in inflammatory bowel disease. Gastroenterology 132:139–153CrossRefPubMedGoogle Scholar
  18. 18.
    Lesnik P, Haskell CA, Charo IF (2003) Decreased atherosclerosis in CX3CR1-/- mice reveals a role for fractalkine in atherogenesis. J Clin Invest 111:333–340PubMedGoogle Scholar
  19. 19.
    Combadiere C, Potteaux S, Gao JL, Esposito B, Casanova S, Lee EJ et al (2003) Decreased atherosclerotic lesion formation in CX3CR1/apolipoprotein E double knockout mice. Circulation 107:1009–1016CrossRefPubMedGoogle Scholar
  20. 20.
    Teupser D, Pavlides S, Tan M, Gutierrez-Ramos JC, Kolbeck R, Breslow JL (2004) Major reduction of atherosclerosis in fractalkine (CX3CL1)-deficient mice is at the brachiocephalic artery, not the aortic root. Proc Natl Acad Sci U S A 101:17795–17800CrossRefPubMedGoogle Scholar
  21. 21.
    Tacke F, Alvarez D, Kaplan TJ, Jakubzick C, Spanbroek R, Llodra J et al (2007) Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J Clin Invest 117:185–194CrossRefPubMedGoogle Scholar
  22. 22.
    Cybulsky MI, Hegele RA (2003) The fractalkine receptor CX3CR1 is a key mediator of atherogenesis. J Clin Invest 111:1118–1120PubMedGoogle Scholar
  23. 23.
    Ancuta P, Rao R, Moses A, Mehle A, Shaw SK, Luscinskas FW et al (2003) Fractalkine preferentially mediates arrest and migration of CD16 + monocytes. J Exp Med 197:1701–1707CrossRefPubMedGoogle Scholar
  24. 24.
    Bursill CA, Channon KM, Greaves DR (2004) The role of chemokines in atherosclerosis: recent evidence from experimental models and population genetics. Curr Opin Lipidol 15:145–149CrossRefPubMedGoogle Scholar
  25. 25.
    Kawahara I, Kitagawa N, Tsutsumi K, Nagata I, Hayashi T, Koji T (2007) The expression of vascular dendritic cells in human atherosclerotic carotid plaques. Hum Pathol 38:1378–1385CrossRefPubMedGoogle Scholar
  26. 26.
    Yang XP, Mattagajasingh S, Su S, Chen G, Cai Z, Fox-Talbot K et al (2007) Fractalkine upregulates intercellular adhesion molecule-1 in endothelial cells through CX3CR1 and the Jak Stat5 pathway. Circ Res 101:1001–1008CrossRefPubMedGoogle Scholar
  27. 27.
    Papadopoulos EJ, Sassetti C, Saeki H, Yamada N, Kawamura T, Fitzhugh DJ et al (1999) Fractalkine, a CX3C chemokine, is expressed by dendritic cells and is up-regulated upon dendritic cell maturation. Eur J Immunol 29:2551–2559CrossRefPubMedGoogle Scholar
  28. 28.
    McDermott DH, Fong AM, Yang Q, Sechler JM, Cupples LA, Merrell MN et al (2003) Chemokine receptor mutant CX3CR1-M280 has impaired adhesive function and correlates with protection from cardiovascular disease in humans. J Clin Invest 111:1241–1250PubMedGoogle Scholar
  29. 29.
    Apostolakis S, Baritaki S, Kochiadakis GE, Igoumenidis NE, Panutsopulos D, Spandidos DA (2007) Effects of polymorphisms in chemokine ligands and receptors on susceptibility to coronary artery disease. Thromb Res 119:63–71CrossRefPubMedGoogle Scholar
  30. 30.
    Llodra J, Angeli V, Liu J, Trogan E, Fisher EA, Randolph GJ (2004) Emigration of monocyte-derived cells from atherosclerotic lesions characterizes regressive, but not progressive, plaques. Proc Natl Acad Sci U S A 101:11779–11784CrossRefPubMedGoogle Scholar
  31. 31.
    Lindquist RL, Shakhar G, Dudziak D, Wardemann H, Eisenreich T, Dustin ML et al (2004) Visualizing dendritic cell networks in vivo. Nat Immunol 5:1243–1250CrossRefPubMedGoogle Scholar
  32. 32.
    Jongstra-Bilen J, Haidari M, Zhu SN, Chen M, Guha D, Cybulsky MI (2006) Low-grade chronic inflammation in regions of the normal mouse arterial intima predisposed to atherosclerosis. J Exp Med 203:2073–2083CrossRefPubMedGoogle Scholar
  33. 33.
    Chan SS, McConnell I, Blacklaws BA (2002) Generation and characterization of ovine dendritic cells derived from peripheral blood monocytes. Immunology 107:366–372CrossRefPubMedGoogle Scholar
  34. 34.
    Cheng F, He S (2009) RNA interference: a potent technology in studying and modulating of dendritic cells, and potential in clinical therapy. Mol Biol RepGoogle Scholar
  35. 35.
    Yoneda O, Imai T, Goda S, Inoue H, Yamauchi A, Okazaki T et al (2000) Fractalkine-mediated endothelial cell injury by NK cells. J Immunol 164:4055–4062PubMedGoogle Scholar
  36. 36.
    Fox D, Kouris GJ, Blumofe KA, Heilizer TJ, Husak V, Greisler HP (1999) Optimizing fluorescent labeling of endothelial cells for tracking during long-term studies of autologous transplantation. J Surg Res 86:9–16CrossRefPubMedGoogle Scholar
  37. 37.
    Bender A, Sapp M, Schuler G, Steinman RM, Bhardwaj N (1996) Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. J Immunol Methods 196:121–135CrossRefPubMedGoogle Scholar
  38. 38.
    Esendagli G, Gunel-Ozcan A, Canpinar H, Guc D (2009) Molecular and functional analysis of a novel recombinant clone of rat (Rattus norvegicus) CD40 ligand (CD40L) gene. Mol Biol Rep 36:83–89CrossRefPubMedGoogle Scholar
  39. 39.
    Dichmann S, Herouy Y, Purlis D, Rheinen H, Gebicke-Harter P, Norgauer J (2001) Fractalkine induces chemotaxis and actin polymerization in human dendritic cells. Inflamm Res 50:529–533CrossRefPubMedGoogle Scholar
  40. 40.
    Goda S, Imai T, Yoshie O, Yoneda O, Inoue H, Nagano Y et al (2000) CX3C-chemokine, fractalkine-enhanced adhesion of THP-1 cells to endothelial cells through integrin-dependent and -independent mechanisms. J Immunol 164:4313–4320PubMedGoogle Scholar
  41. 41.
    Umehara H, Goda S, Imai T, Nagano Y, Minami Y, Tanaka Y et al (2001) Fractalkine, a CX3C-chemokine, functions predominantly as an adhesion molecule in monocytic cell line THP-1. Immunol Cell Biol 79:298–302CrossRefPubMedGoogle Scholar
  42. 42.
    Bobryshev YV (2005) Dendritic cells in atherosclerosis: current status of the problem and clinical relevance. Eur Heart J 26:1700–1704CrossRefPubMedGoogle Scholar
  43. 43.
    Liu P, Yu YR, Spencer JA, Johnson AE, Vallanat CT, Fong AM et al (2008) CX3CR1 deficiency impairs dendritic cell accumulation in arterial intima and reduces atherosclerotic burden. Arterioscler Thromb Vasc Biol 28:243–250CrossRefPubMedGoogle Scholar
  44. 44.
    Bolovan-Fritts CA, Spector SA (2008) Endothelial damage from cytomegalovirus-specific host immune response can be prevented by targeted disruption of fractalkine-CX3CR1 interaction. Blood 111:175–182CrossRefPubMedGoogle Scholar
  45. 45.
    Jamieson WL, Shimizu S, D’Ambrosio JA, Meucci O, Fatatis A (2008) CX3CR1 is expressed by prostate epithelial cells and androgens regulate the levels of CX3CL1/fractalkine in the bone marrow: potential role in prostate cancer bone tropism. Cancer Res 68:1715–1722CrossRefPubMedGoogle Scholar
  46. 46.
    Tsai IF, Lin CY, Huang CT, Lin YC, Yang CM, Liao CH (2007) Modulation of human monocyte-derived dendritic cells maturation by a soluble guanylate cyclase activator, YC-1, in a cyclic nucleotide independent manner. Int Immunopharmacol 7:1299–1310CrossRefPubMedGoogle Scholar
  47. 47.
    Rossi M, Young JW (2005) Human dendritic cells: potent antigen-presenting cells at the crossroads of innate and adaptive immunity. J Immunol 175:1373–1381PubMedGoogle Scholar
  48. 48.
    Li L, Huang L, Sung SS, Vergis AL, Rosin DL, Rose CE Jr et al (2008) The chemokine receptors CCR2 and CX3CR1 mediate monocyte/macrophage trafficking in kidney ischemia-reperfusion injury. Kidney Int 74:1526–1537CrossRefPubMedGoogle Scholar
  49. 49.
    Yilmaz A, Lochno M, Traeg F, Cicha I, Reiss C, Stumpf C et al (2004) Emergence of dendritic cells in rupture-prone regions of vulnerable carotid plaques. Atherosclerosis 176:101–110CrossRefPubMedGoogle Scholar
  50. 50.
    Erbel C, Sato K, Meyer FB, Kopecky SL, Frye RL, Goronzy JJ et al (2007) Functional profile of activated dendritic cells in unstable atherosclerotic plaque. Basic Res Cardiol 102:123–132CrossRefPubMedGoogle Scholar
  51. 51.
    McManus MT, Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3:737–747CrossRefPubMedGoogle Scholar
  52. 52.
    Adams AM, Pratt SL, Stice SL (2005) Knockdown of the Dnmt1 s transcript using small interfering RNA in primary murine and bovine fibroblast cells. Mol Reprod Dev 72:311–319CrossRefPubMedGoogle Scholar
  53. 53.
    Jagla B, Aulner N, Kelly PD, Song D, Volchuk A, Zatorski A et al (2005) Sequence characteristics of functional siRNAs. RNA 11:864–872CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Pharmacy, Renji HospitalShanghai Jiaotong University School of MedicineShanghaiChina

Personalised recommendations