Molecular Biology Reports

, Volume 38, Issue 1, pp 445–451 | Cite as

The association of polymorphisms in DNA base excision repair genes XRCC1, OGG1 and MUTYH with the risk of childhood acute lymphoblastic leukemia

  • M. Stanczyk
  • T. Sliwinski
  • M. Cuchra
  • M. Zubowska
  • A. Bielecka-Kowalska
  • M. Kowalski
  • J. Szemraj
  • W. Mlynarski
  • I. Majsterek


The aim of this study was to evaluate the association of polymorphisms in genes encoding three key proteins of DNA base excision repair (BER): the OGG1 Ser326Cys, the MUTYH Tyr165Cys and the XRCC1 Arg399Gln with the risk of childhood acute lymphoblastic leukemia (ALL). Our study included 97 children patients with ALL (mean age 5.4 ± 2.5) and 131 healthy children (mean age 6.2 ± 2.8) used as controls. Genetic polymorphisms in BER pathway genes were examined using PCR and restriction fragment length polymorphism (RFLP). We have demonstrated that the OGG1 Cys/Cys genotype increases the risk of ALL (OR 5.36) whereas the Ser/Ser genotype variant strongly reduces the risk of this cancer among Polish children (OR 0.45). Although we did not observe the differences in single nucleotide polymorphisms (SNPs) in MUTYH and XRCC1 genes between control group and children with ALL, we have shown that the combined genotypes of examined genes can modulate the risk of childhood ALL in Polish population. We found that the combined genotype Arg/Gln–Cys/Cys of XRCC1/OGG1 (OR 3.83) as well as the Cys/Cys–Tyr/Tyr of OGG1/MUTYH (OR 6.75) increases the risk of ALL. In contrast, the combined genotype Arg/Arg–Ser/Ser of XRCC1/OGG1 (OR 0.40) as well as the Ser/Ser–Tyr/Tyr of OGG1/MUTYH (OR 0.43) played a protective role against this malignant disease. In conclusion, we suggest that polymorphisms of BER genes may be used as an important predictive factor for acute lymphoblastic leukemia in children.


Childhood acute lymphoblastic leukemia Base excision repair Gene polymorphism XRCC1 OGG1 MUTYH 



This work was supported by grants from the Polish Scientific Research Committee (No. N N301 294637) and from the University of Lodz (No. 505/376).

Conflict of interest statement

The authors declare that there are no conflicts of interest.


  1. 1.
    Udayakumar AM, Pathare AV, Al-Kindi S, Khan H, Rehmen JU, Zia F, Al-Ghazaly A, Nusrut N, Khan MI, Wali YA, Al-Lamki Z, Dennison D, Raeburn JA (2007) Cytogenetic, morphological, and immunophenotypic patterns in Omani patients with de novo acute myeloid leukemia. Cancer Genet Cytogenet 177:89–94CrossRefPubMedGoogle Scholar
  2. 2.
    Kebriaei P, Anastasi J, Larson RA (2003) Acute lymphoblastic leukaemia: diagnosis and classification. Best Pract Res Clin Haematol 15:597–621CrossRefGoogle Scholar
  3. 3.
    Sayin DB, Kürekci E, Karabulut HG, Bökesoy I (2009) DNA methyltransferase expression differs with proliferation in childhood acute lymphoblastic leukemia. Mol Biol Rep. doi  10.1007/s11033-009-9760-7
  4. 4.
    Harrison Chj (2001) Acute lymphoblastic leukemia. Best Pract Res Clin Haematol 14:593–607CrossRefPubMedGoogle Scholar
  5. 5.
    Karathanasis NV, Choumerianou DM, Kalmanti M (2009) Gene polymorphisms in childhood ALL. Pediatr Blood Cancer 52:318–323CrossRefPubMedGoogle Scholar
  6. 6.
    Batar B, Güven M, Barıs S, Celkan T, Yıldız I (2009) DNA repair gene XPD and XRCC1 polymorphisms and the risk of childhood acute lymphoblastic leukemia. Leuk Res 33:759–763CrossRefPubMedGoogle Scholar
  7. 7.
    Joseph T, Kusumakumary P, Chacko P, Abraham A, Pillai MR (2005) DNA repair gene XRCC1 polymorphisms in childhood acute lymphoblastic leukemia. Cancer Lett 217:17–24CrossRefPubMedGoogle Scholar
  8. 8.
    Frouin I, Prosperi E, Denegri M, Negri C, Donzelli M, Rossi L, Riva F, Stefanini M, Scovassi AI (2001) Different effects of methotrexate on DNA mismatch repair proficient and deficient cells. Eur J Cancer 37:1173–1180CrossRefPubMedGoogle Scholar
  9. 9.
    Evert BA, Salmon TB, Song B, Jingjing L, Siede W, Doetsch PW (2004) Spontaneous DNA damage in Saccharomyces cerevisiae elicits phenotypic properties similar to cancer cells. J Biol Chem 279:22585–22594CrossRefPubMedGoogle Scholar
  10. 10.
    Tudek B (2007) Base excision repair modulation as a risk factor for human cancers. Mol Aspects Med 28:258–275CrossRefPubMedGoogle Scholar
  11. 11.
    Pakakasama S, Sirirat T, Kanchanachumpol S, Udomsubpayakul U, Mahasirimongkol S, Kitpoka P, Thithapandha A, Hongeng S (2007) Genetic polymorphisms and haplotypes of DNA repair genes in childhood acute lymphoblastic leukemia. Pediatr Blood Cancer 48:16–20CrossRefPubMedGoogle Scholar
  12. 12.
    Deligezer U, Dalay EE, Dalay N (2007) Lack of association of XRCC1 codon 399Gln polymorphism with chronic myelogenous leukemia. Anticancer Res 27:2453–2456PubMedGoogle Scholar
  13. 13.
    Hu Z, Ma H, Chen F, Wei Q, Shen H (2005) XRCC1 polymorphisms and cancer risk: a meta-analysis of 38 case-control studies. Cancer Epidemiol Biomarkers Prev 14:1810–1818CrossRefPubMedGoogle Scholar
  14. 14.
    Seedhouse C, Bainton R, Lewis M, Harding A, Russell N, Das-Gupta E (2002) The genotype distribution of the XRCC1 gene indicates a role for base excision repair in the development of therapy-related acute myeloblastic leukemia. Blood 100:3761–3766CrossRefPubMedGoogle Scholar
  15. 15.
    Park JY, Lee SY, Jeon HS, Bae NC, Chae SC, Joo S, Kim CH, Park JH, Kam S, Kim IS, Jung TH (2002) Polymorphism of the DNA repair gene XRCC1 and risk of primary lung cancer. Cancer Epidemiol Biomarkers Prev 1:23–27Google Scholar
  16. 16.
    Hill JW, Evans MK (2007) A novel R229Q OGG1 polymorphism results in a thermolabile enzyme that sensitizes KG-1 leukemia cells to DNA damaging agents. Cancer Detect Prev 31:237–243CrossRefPubMedGoogle Scholar
  17. 17.
    Zhou F, Zhanga W, Wei Y, Zhouc D, Sua Z, Menga X, Hui L, Tian W (2007) The changes of oxidative stress and human 8-hydroxyguanine glycosylase1 gene expression in depressive patients with acute leukemia. Leuk Res 31:387–393CrossRefPubMedGoogle Scholar
  18. 18.
    Nohmi T, Kim SR, Yamada M (2005) Modulation of oxidative mutagenesis and carcinogenesis by polymorphic forms of human DNA repair enzymes. Mutat Res 591:60–73PubMedGoogle Scholar
  19. 19.
    Goto M, Shinmura K, Yamada H, Tsuneyoshi T, Sugimura H (2008) OGG1, MYH and MTH1 gene variants identified in gastric cancer patients exhibiting both 8-hydroxy-2-deoxyguanosine accumulation and low inflammatory cell infiltration in their gastric mucosa. J Genet 87:181–186CrossRefPubMedGoogle Scholar
  20. 20.
    Arizono K, Osada Y, Kuroda Y (2008) DNA repair gene hOGG1 codon 326 and XRCC1 codon 399 polymorphisms and bladder cancer risk in a Japanese population. Jpn J Clin Oncol 38:186–191CrossRefPubMedGoogle Scholar
  21. 21.
    Karahalil B, Emerce E, Kocabas NA, Akkas E (2010) Associations between GSTM1 and OGG1 Ser326Cys polymorphisms and smoking on chromosomal damage and birth growth in mothers. Mol Biol Rep. doi  10.1007/s11033-010-9953-0
  22. 22.
    Kasahara M, Osawa K, Yoshida K, Miyaishi A, Osawa Y, Inoue N, Tsutou A, Tabuchi Y, Tanaka K, Yamamoto M, Shimada E, Takahashi J (2008) Association of MUTYH Gln324His and APEX1 Asp148Glu with colorectal cancer and smoking in a Japanese population. J Exp Clin Cancer Res 27:49CrossRefPubMedGoogle Scholar
  23. 23.
    Risinger MA, Groden J (2004) Crosslinks and crosstalk: human cancer syndromes and DNA repair defects. Cancer Cell 6:539–545PubMedGoogle Scholar
  24. 24.
    Parker A, Gu Y, Mahoney W, Lee S-H, Singh KK, Lu A-L (2001) Human homolog of the MutY repair protein (hMYH) physically interacts with proteins involved in long patch DNA base excision repair. J Biol Chem 276:5547–5555CrossRefPubMedGoogle Scholar
  25. 25.
    Sliwinski T, Markiewicz L, Rusin P, Pietruszewska W, Olszewski J, Morawiec-Sztandera A, Mlynarski W, Majsterek I (2009) Polymorphisms of the DNA base excision repair gene MUTYH in head and neck cancer. Exp Oncol 31:57–59PubMedGoogle Scholar
  26. 26.
    Croitoru ME, Cleary SP, Di Nicola N, Manno M, Selander T, Aronson M, Redston M, Cotterchio M, Knight J, Gryfe R, Gallinger S (2004) Association between biallelic and monoallelic germline MYH gene mutations and colorectal cancer risk. J Natl Cancer Inst 96:1631–1634CrossRefPubMedGoogle Scholar
  27. 27.
    Le Marchand L, Donlon T, Lum-Jones A, Seifried A, Wilkens LR (2002) Association of the hOGG1 Ser326Cys polymorphism with lung cancer risk. Cancer Epidemiol Biomarkers Prev 11:409–412PubMedGoogle Scholar
  28. 28.
    Srivastava A, Srivastava K, Pandey SN, Choudhuri G, Mittal B (2009) Single-nucleotide polymorphisms of DNA repair genes OGG1 and XRCC1: association with gallbladder cancer in North Indian population. Ann Surg Oncol 16:1695–1703CrossRefPubMedGoogle Scholar
  29. 29.
    Sliwinski T, Krupa R, Wisniewska-Jarosinska M, Pawlowska E, Lech J, Chojnacki J, Blasiak J (2009) Common polymorphisms in the XPD and hOGG1 genes are not associated with the risk of colorectal cancer in a Polish population. Tohoku J Exp Med 18:185–191CrossRefGoogle Scholar
  30. 30.
    Vogel U, Nexø BA, Olsen A, Thomsen B, Jacobsen NR, Wallin H, Overvad KA (2003) No association between OGG1 Ser326Cys polymorphism and breast cancer risk. Cancer Epidemiol Biomarkers Prev 12:170–171PubMedGoogle Scholar
  31. 31.
    Abdel-Rahman SZ, Soliman AS, Bondy ML, Omar S, El-Badawy SA, Khaled HM, Seifeldin IA, Levin B (2000) Inheritance of the 194Trp and the 399Gln variant alleles of the DNA repair gene XRCC1 are associated with increased risk of early-onset colorectal carcinoma in Egypt. Cancer Lett 16:79–86CrossRefGoogle Scholar
  32. 32.
    Mohamadynejad P, Saadat M (2008) Genetic polymorphisms of XRCC1 (at codons 194 and 399) in Shiraz population (Fars province, southern Iran). Mol Biol Rep 35:669–672CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • M. Stanczyk
    • 1
  • T. Sliwinski
    • 1
  • M. Cuchra
    • 1
  • M. Zubowska
    • 2
  • A. Bielecka-Kowalska
    • 3
  • M. Kowalski
    • 3
  • J. Szemraj
    • 4
  • W. Mlynarski
    • 2
  • I. Majsterek
    • 1
    • 3
  1. 1.Department of Molecular GeneticsUniversity of LodzLodzPoland
  2. 2.Department of PediatricsMedical University of LodzLodzPoland
  3. 3.Department of Clinical Chemistry and BiochemistryMedical University of LodzLodzPoland
  4. 4.Department of Medical BiochemistryMedical University of LodzLodzPoland

Personalised recommendations