Advertisement

Molecular Biology Reports

, Volume 37, Issue 8, pp 4083–4090 | Cite as

Recombinant expression of human nerve growth factor beta in rabbit bone marrow mesenchymal stem cells

  • Bo-Sheng Fan
  • Ji-Yu Lou
Article

Abstract

Nerve growth factor (NGF) is required for the differentiation and maintenance of sympathetic and sensory neurons. In the present study, the recombinant expression of human nerve growth factor beta (hNGF-β) gene in rabbit bone marrow mesenchymal stem cells (rMSCs) was undertaken. Recombinant vector containing hNGF-β was constructed and transferred into rMSCs, the expressions of the exogenous in rMSCs were determined by reverse transcriptase PCR (RT-PCR), ELISA and Western blot, whereas the biological activity of recombinant hNGF-β was confirmed using PC12 cells and cultures of dorsal root ganglion neurons from chicken embryos. The results showed that the hNGF-β gene expressed successfully in the rMSCs, a polypeptide with a molecular weight of 13.2 kDa was detected. The maximal expression level of recombinant hNGF-β in rMSCs reached 126.8012 pg/106 cells, the mean concentration was 96.4473 pg/106 cells. The recombinant hNGF-β in the rMSCs showed full biological activity when compared to commercial recombinant hNGF-β.

Keywords

Nerve growth factor Human nerve growth factor beta Bone marrow mesenchymal stem cells (MSCs) Transgene expression 

Abbreviations

NGF

Nerve growth factor

RT-PCR

Reverse transcriptase-polymerase chain reaction

MSCs

Bone marrow mesenchymal stem cells

RMSCs

Rabbit mesenchymal stem cells

References

  1. 1.
    Levi-Montalcini R (1987) The nerve growth factor thirty-five years later. EMBO J 6(5):1145–1154PubMedGoogle Scholar
  2. 2.
    Thoenen H, Barde YA (1980) Physiology of nerve growth factor. Physiol Rev 60(4):1284–1335PubMedGoogle Scholar
  3. 3.
    Pizzo DP, Thal LJ (2004) Intraparenchymal nerve growth factor improves behavioral deficits while minimizing the adverse effects of intracerebroventricular delivery. Neuroscience 124(4):743–755CrossRefPubMedGoogle Scholar
  4. 4.
    Muangman P, Muffley LA, Anthony JP, Spenny ML, Underwood RA, Olerud JE, Gibran NS (2004) Nerve growth factor accelerates wound healing in diabetic mice. Wound Repair Regen 12(1):44–52CrossRefPubMedGoogle Scholar
  5. 5.
    Kawamoto K, Matsuda H (2004) Nerve growth factor and wound healing. Prog Brain Res 146:369–384CrossRefPubMedGoogle Scholar
  6. 6.
    Mammoto T, Seerattan RA, Paulson KD, Leonard CA, Bray RC, Salo PT (2008) Nerve growth factor improves ligament healing. J Orthop Res 26(7):957–964CrossRefPubMedGoogle Scholar
  7. 7.
    Conner JM, Fass-Holmes B, Varon S (1994) Changes in nerve growth factor immunoreactivity following entorhinal cortex lesions: possible molecular mechanism regulating cholinergic sprouting. J Comp Neurol 345(3):409–418CrossRefPubMedGoogle Scholar
  8. 8.
    Fischer W, Wictorin K, Bjorklund A, Williams LR, Varon S, Gage FH (1987) Melioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature 329(6134):65–68CrossRefPubMedGoogle Scholar
  9. 9.
    Fischer W (1994) Nerve growth factor reverses spatial memory impairments in aged rats. Neurochem Int 25(1):47–52CrossRefPubMedGoogle Scholar
  10. 10.
    Markowska AL, Koliatsos VE, Breckler SJ, Price DL, Olton DS (1994) Human nerve growth factor improves spatial memory in aged but not in young rats. J Neurosci 14(8):4815–4824PubMedGoogle Scholar
  11. 11.
    Xiao B, Li QW, Feng B, Han ZS, Gao W, Li J, Li K, Zhao R, Jiang ZL, Hu JH, Zhi XB (2008) High-level expression of recombinant human nerve growth factor beta in milk of nontransgenic rabbits. J Biosci Bioeng 105(4):327–334CrossRefPubMedGoogle Scholar
  12. 12.
    Jakubowska-Dogru E, Gumusbas U (2005) Chronic intracerebroventricular NGF administration improves working memory in young adult memory deficient rats. Neurosci Lett 382(1–2):45–50CrossRefPubMedGoogle Scholar
  13. 13.
    Missale C, Spano P (1998) Nerve growth factor in pituitary development and pituitary tumors. Front Neuroendocrinol 19(2):128–150CrossRefPubMedGoogle Scholar
  14. 14.
    Frade JM, Barde YA (1998) Nerve growth factor: two receptors, multiple functions. BioEssays 20(2):137–145CrossRefPubMedGoogle Scholar
  15. 15.
    Rogers BC (1996) Development of recombinant human nerve growth factor (rhNGF) as a treatment for peripheral neuropathic disease. Neurotoxicology 17(3–4):865–870PubMedGoogle Scholar
  16. 16.
    Arevalo MA, Roldan PM, Chacón PJ, Rodríguez-Tebar A (2009) Amyloid beta serves as an NGF-like neurotrophic factor or acts as a NGF antagonist depending on its concentration. J Neurochem 111(6):1425–1433CrossRefPubMedGoogle Scholar
  17. 17.
    Bernabei R, Landi F, Bonini S, Onder G, Lambiase A, Pola R, Aloe L (1999) Effect of topical application of nerve-growth factor on pressure ulcers. Lancet 354(9175):307CrossRefPubMedGoogle Scholar
  18. 18.
    Tuveri M, Generini S, Matucci-Cerinic M, Aloe L (2000) NGF, a useful tool in the treatment of chronic vasculitic ulcers in rheumatoid arthritis. Lancet 356(9243):1739–1740CrossRefPubMedGoogle Scholar
  19. 19.
    Lambiase A, Manni L, Rama P, Bonini S (2003) Clinical application of nerve growth factor on human corneal ulcer. Arch Ital Biol 141(2–3):141–148PubMedGoogle Scholar
  20. 20.
    Tan MH, Bryars J, Moore J (2006) Use of nerve growth factor to treat congenital neurotrophic corneal ulceration. Cornea 25(3):352–355CrossRefPubMedGoogle Scholar
  21. 21.
    Lambiase A, Coassin M, Sposato V, Micera A, Sacchetti M, Bonini S, Aloe L (2007) NGF topical application in patients with corneal ulcer does not generate circulating NGF antibodies. Pharmacol Res 56(1):65–69CrossRefPubMedGoogle Scholar
  22. 22.
    Ting L, Bo W, Li R, Chen X, Wang Y, Jun Z, Yu L (2009) AMP-activated protein kinase supports the NGF-induced viability of human HeLa cells to glucose starvation. Mol Biol Rep [Epub ahead of print]Google Scholar
  23. 23.
    Fujimori K, Fukuzono S, Kotomura N, Kuno N, Shimizu N (1992) Overproduction of biologically-active human nerve growth factor in Escherichia coli. Biosci Biotechnol Biochem 56(12):1985–1990CrossRefPubMedGoogle Scholar
  24. 24.
    Nishizawa M, Ozawa F, Higashizaki T, Hirai K, Hishinuma F (1993) Biologically active human and mouse nerve growth factors secreted by the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38(5):624–630CrossRefPubMedGoogle Scholar
  25. 25.
    Nguyen B, Jarnagin K, Williams S, Chan H, Barnett J (1993) Fed-batch culture of insect cells: a method to increase the yield of recombinant human nerve growth factor (rhNGF-β) in the baculovirus expression system. J Biotechnol 31:205–217CrossRefPubMedGoogle Scholar
  26. 26.
    Bruce G, Heinrich G (1989) Production and characterization of biologically active recombinant human nerve growth factor. Neurobiol Aging 10(1):89–94CrossRefPubMedGoogle Scholar
  27. 27.
    Iwane M, Kitamura Y, Kaisho Y, Yoshimura K, Shintani A, Sasada R, Nakagawa S, Kawahara K, Nakahama K, Kakinuma A (1990) Production, purification and characterization of biologically active recombinant human nerve growth factor. Biochem Biophys Res Commun 171(1):116–122CrossRefPubMedGoogle Scholar
  28. 28.
    Schmelzer CH, Burton LE, Chan WP, Martin E, Gorman C, Canova-Davis E, Ling VT, Sliwkowski MB, McCray G, Briggs JA, Nguyen TH, Polastri G (1992) Biochemical characterization of recombinant human nerve growth factor. J Neurochem 59(5):1675–1683CrossRefPubMedGoogle Scholar
  29. 29.
    Xiao B, Li Q, Feng B, Han Z, Gao D, Zhao R, Li J, Li K, Zhi X, Yang H, Liu Z (2009) Expression of recombinant human nerve growth factor beta in milk of goats by recombinant replication-defective adenovirus. Appl Biochem Biotechnol 157(3):357–366CrossRefPubMedGoogle Scholar
  30. 30.
    Coulibaly S, Besenfelder U, Fleischmann M, Zinovieva N, Grossmann A, Wozny M, Bartke I, Togel M, Muller M, Brem G (1999) Human nerve growth factor beta (hNGF-beta): mammary gland specific expression and production in transgenic rabbits. FEBS Lett 444(1):111–116CrossRefPubMedGoogle Scholar
  31. 31.
    Werner RG (1998) Innovative and economic potential of mammalian cell culture. Arzneimittelforschung 48(4):423–426PubMedGoogle Scholar
  32. 32.
    Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19(3):180–192CrossRefPubMedGoogle Scholar
  33. 33.
    Deans RJ, Moseley AB (2000) Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 28(8):875–884CrossRefPubMedGoogle Scholar
  34. 34.
    Minguell JJ, Erices A, Conget P (2001) Mesenchymal stem cells. Exp Biol Med 226(6):507–520Google Scholar
  35. 35.
    Pereira RF, Halford KW, O’Hara MD, Leeper DB, Sokolov BP, Pollard MD, Bagasra O, Prockop DJ (1995) Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc Natl Acad Sci 92(11):4857–4861CrossRefPubMedGoogle Scholar
  36. 36.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147CrossRefPubMedGoogle Scholar
  37. 37.
    Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, Freeman TB, Saporta S, Janssen W, Patel N, Cooper DR, Sanberg PR (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164(2):247–256CrossRefPubMedGoogle Scholar
  38. 38.
    Li L, Zhang S, Zhang Y, Yu B, Xu Y, Guan Z (2009) AMP-activated protein kinase supports the NGF-induced viability of human HeLa cells to glucose starvation. Mol Biol Rep 36(4):725–731CrossRefPubMedGoogle Scholar
  39. 39.
    Shakhbazau A, Shcharbin D, Seviaryn I, Goncharova N, Kosmacheva S, Potapnev M, Gabara B, Ionov M, Bryszewska M (2009) Use of polyamidoamine dendrimers to engineer BDNF-producing human mesenchymal stem cells. Mol Biol Rep [Epub ahead of print]Google Scholar
  40. 40.
    Hou X, Wu X, Ma J, Lv X, Jin X (2010) Erythropoietin augments the efficacy of therapeutic angiogenesis induced by allogenic bone marrow stromal cells in a rat model of limb ischemia. Mol Biol Rep 37(3):1467–12475CrossRefPubMedGoogle Scholar
  41. 41.
    Chung N, Jee BK, Chae SW, Jeon YW, Lee KH, Rha HK (2009) HOX gene analysis of endothelial cell differentiation in human bone marrow-derived mesenchymal stem cells. Mol Biol Rep 36(2):227–235CrossRefPubMedGoogle Scholar
  42. 42.
    Liu H, Fan H, Toh SL, Goh JC (2008) A comparison of rabbit mesenchymal stem cells and anterior cruciate ligament fibroblasts responses on combined silk scaffolds. Biomaterials 29(10):1443–1453CrossRefPubMedGoogle Scholar
  43. 43.
    Jin B, Luo XP, Ni HC, Li Y, Shi HM (2009). Cardiac matrix remodeling following intracoronary cell transplantation in dilated cardiomyopathic rabbits. Mol Biol Rep [Epub ahead of print]Google Scholar
  44. 44.
    Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory PressGoogle Scholar
  45. 45.
    Omoto M, Miyashita H, Shimmura S, Higa K, Kawakita T, Yoshida S, McGrogan M, Shimazaki J, Tsubota K (2009) The use of human mesenchymal stem cell-derived feeder cells for the cultivation of transplantable epithelial sheets. Invest Ophthalmol Vis Sci 50(5):2109–2115CrossRefPubMedGoogle Scholar
  46. 46.
    Scott J, Selby M, Urdea M, Quiroga M, Bell GI, Rutter WJ (1983) Isolation and nucleotide sequence of a cDNA encoding the precursor of mouse nerve growth factor. Nature 302(5908):538–540CrossRefPubMedGoogle Scholar
  47. 47.
    Stoeltzing O, Ahmad SA, Liu W, McCarty MF, Parikh AA, Fan F, Reinmuth N, Bucana CD, Ellis LM (2002) Angiopoietin-1 inhibits tumour growth and ascites formation in a murine model of peritoneal carcinomatosis. Br J Cancer 87(10):1182–1187CrossRefPubMedGoogle Scholar
  48. 48.
    Yu BF, Li WI, Hu XN, Zhang YH, Niu B, Xie J (2009) Hepatocyte gene transfer mediated by stable polyplexes based on MPP-containing DNA complexes. Hepatobiliary Pancreat Dis Int 8(5):498–503PubMedGoogle Scholar
  49. 49.
    Fang R, Nie H, Wang Z, Tu P, Zhou D, Wang L, He L, Zhou Y, Zhao J (2009) Protective immune response in BALB/c mice induced by a suicidal DNA vaccine of the MIC3 gene of Toxoplasma gondii. Vet Parasitol 164(2–4):134–140CrossRefPubMedGoogle Scholar
  50. 50.
    Jiang Y, Wang Y, Kuang Y, Wang B, Li W, Gong T, Jiang Z, Yang D, Li M (2009) Expression of mouse beta-defensin-3 in MDCK cells and its anti-influenza-virus activity. Arch Virol 154(4):639–647CrossRefPubMedGoogle Scholar
  51. 51.
    Kano FS, Tamekuni K, Coelho AL, Garcia JL, Vidotto O, Itano EN, Vidotto MC (2008) Induced immune response of DNA vaccine encoding an association MSP1a, MSP1b, and MSP5 antigens of Anaplasma marginale. Vaccine 26(27–28):3522–3527CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  1. 1.Department of Internal NeurologySecond Affiliated Hospital, Zhengzhou UniversityZhengzhouPeople’s Republic of China

Personalised recommendations