Skip to main content
Log in

Recombinant expression of human nerve growth factor beta in rabbit bone marrow mesenchymal stem cells

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Nerve growth factor (NGF) is required for the differentiation and maintenance of sympathetic and sensory neurons. In the present study, the recombinant expression of human nerve growth factor beta (hNGF-β) gene in rabbit bone marrow mesenchymal stem cells (rMSCs) was undertaken. Recombinant vector containing hNGF-β was constructed and transferred into rMSCs, the expressions of the exogenous in rMSCs were determined by reverse transcriptase PCR (RT-PCR), ELISA and Western blot, whereas the biological activity of recombinant hNGF-β was confirmed using PC12 cells and cultures of dorsal root ganglion neurons from chicken embryos. The results showed that the hNGF-β gene expressed successfully in the rMSCs, a polypeptide with a molecular weight of 13.2 kDa was detected. The maximal expression level of recombinant hNGF-β in rMSCs reached 126.8012 pg/106 cells, the mean concentration was 96.4473 pg/106 cells. The recombinant hNGF-β in the rMSCs showed full biological activity when compared to commercial recombinant hNGF-β.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

NGF:

Nerve growth factor

RT-PCR:

Reverse transcriptase-polymerase chain reaction

MSCs:

Bone marrow mesenchymal stem cells

RMSCs:

Rabbit mesenchymal stem cells

References

  1. Levi-Montalcini R (1987) The nerve growth factor thirty-five years later. EMBO J 6(5):1145–1154

    CAS  PubMed  Google Scholar 

  2. Thoenen H, Barde YA (1980) Physiology of nerve growth factor. Physiol Rev 60(4):1284–1335

    CAS  PubMed  Google Scholar 

  3. Pizzo DP, Thal LJ (2004) Intraparenchymal nerve growth factor improves behavioral deficits while minimizing the adverse effects of intracerebroventricular delivery. Neuroscience 124(4):743–755

    Article  CAS  PubMed  Google Scholar 

  4. Muangman P, Muffley LA, Anthony JP, Spenny ML, Underwood RA, Olerud JE, Gibran NS (2004) Nerve growth factor accelerates wound healing in diabetic mice. Wound Repair Regen 12(1):44–52

    Article  PubMed  Google Scholar 

  5. Kawamoto K, Matsuda H (2004) Nerve growth factor and wound healing. Prog Brain Res 146:369–384

    Article  CAS  PubMed  Google Scholar 

  6. Mammoto T, Seerattan RA, Paulson KD, Leonard CA, Bray RC, Salo PT (2008) Nerve growth factor improves ligament healing. J Orthop Res 26(7):957–964

    Article  CAS  PubMed  Google Scholar 

  7. Conner JM, Fass-Holmes B, Varon S (1994) Changes in nerve growth factor immunoreactivity following entorhinal cortex lesions: possible molecular mechanism regulating cholinergic sprouting. J Comp Neurol 345(3):409–418

    Article  CAS  PubMed  Google Scholar 

  8. Fischer W, Wictorin K, Bjorklund A, Williams LR, Varon S, Gage FH (1987) Melioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature 329(6134):65–68

    Article  CAS  PubMed  Google Scholar 

  9. Fischer W (1994) Nerve growth factor reverses spatial memory impairments in aged rats. Neurochem Int 25(1):47–52

    Article  CAS  PubMed  Google Scholar 

  10. Markowska AL, Koliatsos VE, Breckler SJ, Price DL, Olton DS (1994) Human nerve growth factor improves spatial memory in aged but not in young rats. J Neurosci 14(8):4815–4824

    CAS  PubMed  Google Scholar 

  11. Xiao B, Li QW, Feng B, Han ZS, Gao W, Li J, Li K, Zhao R, Jiang ZL, Hu JH, Zhi XB (2008) High-level expression of recombinant human nerve growth factor beta in milk of nontransgenic rabbits. J Biosci Bioeng 105(4):327–334

    Article  CAS  PubMed  Google Scholar 

  12. Jakubowska-Dogru E, Gumusbas U (2005) Chronic intracerebroventricular NGF administration improves working memory in young adult memory deficient rats. Neurosci Lett 382(1–2):45–50

    Article  CAS  PubMed  Google Scholar 

  13. Missale C, Spano P (1998) Nerve growth factor in pituitary development and pituitary tumors. Front Neuroendocrinol 19(2):128–150

    Article  CAS  PubMed  Google Scholar 

  14. Frade JM, Barde YA (1998) Nerve growth factor: two receptors, multiple functions. BioEssays 20(2):137–145

    Article  CAS  PubMed  Google Scholar 

  15. Rogers BC (1996) Development of recombinant human nerve growth factor (rhNGF) as a treatment for peripheral neuropathic disease. Neurotoxicology 17(3–4):865–870

    CAS  PubMed  Google Scholar 

  16. Arevalo MA, Roldan PM, Chacón PJ, Rodríguez-Tebar A (2009) Amyloid beta serves as an NGF-like neurotrophic factor or acts as a NGF antagonist depending on its concentration. J Neurochem 111(6):1425–1433

    Article  CAS  PubMed  Google Scholar 

  17. Bernabei R, Landi F, Bonini S, Onder G, Lambiase A, Pola R, Aloe L (1999) Effect of topical application of nerve-growth factor on pressure ulcers. Lancet 354(9175):307

    Article  CAS  PubMed  Google Scholar 

  18. Tuveri M, Generini S, Matucci-Cerinic M, Aloe L (2000) NGF, a useful tool in the treatment of chronic vasculitic ulcers in rheumatoid arthritis. Lancet 356(9243):1739–1740

    Article  CAS  PubMed  Google Scholar 

  19. Lambiase A, Manni L, Rama P, Bonini S (2003) Clinical application of nerve growth factor on human corneal ulcer. Arch Ital Biol 141(2–3):141–148

    CAS  PubMed  Google Scholar 

  20. Tan MH, Bryars J, Moore J (2006) Use of nerve growth factor to treat congenital neurotrophic corneal ulceration. Cornea 25(3):352–355

    Article  PubMed  Google Scholar 

  21. Lambiase A, Coassin M, Sposato V, Micera A, Sacchetti M, Bonini S, Aloe L (2007) NGF topical application in patients with corneal ulcer does not generate circulating NGF antibodies. Pharmacol Res 56(1):65–69

    Article  CAS  PubMed  Google Scholar 

  22. Ting L, Bo W, Li R, Chen X, Wang Y, Jun Z, Yu L (2009) AMP-activated protein kinase supports the NGF-induced viability of human HeLa cells to glucose starvation. Mol Biol Rep [Epub ahead of print]

  23. Fujimori K, Fukuzono S, Kotomura N, Kuno N, Shimizu N (1992) Overproduction of biologically-active human nerve growth factor in Escherichia coli. Biosci Biotechnol Biochem 56(12):1985–1990

    Article  CAS  PubMed  Google Scholar 

  24. Nishizawa M, Ozawa F, Higashizaki T, Hirai K, Hishinuma F (1993) Biologically active human and mouse nerve growth factors secreted by the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38(5):624–630

    Article  CAS  PubMed  Google Scholar 

  25. Nguyen B, Jarnagin K, Williams S, Chan H, Barnett J (1993) Fed-batch culture of insect cells: a method to increase the yield of recombinant human nerve growth factor (rhNGF-β) in the baculovirus expression system. J Biotechnol 31:205–217

    Article  CAS  PubMed  Google Scholar 

  26. Bruce G, Heinrich G (1989) Production and characterization of biologically active recombinant human nerve growth factor. Neurobiol Aging 10(1):89–94

    Article  CAS  PubMed  Google Scholar 

  27. Iwane M, Kitamura Y, Kaisho Y, Yoshimura K, Shintani A, Sasada R, Nakagawa S, Kawahara K, Nakahama K, Kakinuma A (1990) Production, purification and characterization of biologically active recombinant human nerve growth factor. Biochem Biophys Res Commun 171(1):116–122

    Article  CAS  PubMed  Google Scholar 

  28. Schmelzer CH, Burton LE, Chan WP, Martin E, Gorman C, Canova-Davis E, Ling VT, Sliwkowski MB, McCray G, Briggs JA, Nguyen TH, Polastri G (1992) Biochemical characterization of recombinant human nerve growth factor. J Neurochem 59(5):1675–1683

    Article  CAS  PubMed  Google Scholar 

  29. Xiao B, Li Q, Feng B, Han Z, Gao D, Zhao R, Li J, Li K, Zhi X, Yang H, Liu Z (2009) Expression of recombinant human nerve growth factor beta in milk of goats by recombinant replication-defective adenovirus. Appl Biochem Biotechnol 157(3):357–366

    Article  CAS  PubMed  Google Scholar 

  30. Coulibaly S, Besenfelder U, Fleischmann M, Zinovieva N, Grossmann A, Wozny M, Bartke I, Togel M, Muller M, Brem G (1999) Human nerve growth factor beta (hNGF-beta): mammary gland specific expression and production in transgenic rabbits. FEBS Lett 444(1):111–116

    Article  CAS  PubMed  Google Scholar 

  31. Werner RG (1998) Innovative and economic potential of mammalian cell culture. Arzneimittelforschung 48(4):423–426

    CAS  PubMed  Google Scholar 

  32. Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19(3):180–192

    Article  CAS  PubMed  Google Scholar 

  33. Deans RJ, Moseley AB (2000) Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol 28(8):875–884

    Article  CAS  PubMed  Google Scholar 

  34. Minguell JJ, Erices A, Conget P (2001) Mesenchymal stem cells. Exp Biol Med 226(6):507–520

    CAS  Google Scholar 

  35. Pereira RF, Halford KW, O’Hara MD, Leeper DB, Sokolov BP, Pollard MD, Bagasra O, Prockop DJ (1995) Cultured adherent cells from marrow can serve as long-lasting precursor cells for bone, cartilage, and lung in irradiated mice. Proc Natl Acad Sci 92(11):4857–4861

    Article  CAS  PubMed  Google Scholar 

  36. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  CAS  PubMed  Google Scholar 

  37. Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, Freeman TB, Saporta S, Janssen W, Patel N, Cooper DR, Sanberg PR (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164(2):247–256

    Article  CAS  PubMed  Google Scholar 

  38. Li L, Zhang S, Zhang Y, Yu B, Xu Y, Guan Z (2009) AMP-activated protein kinase supports the NGF-induced viability of human HeLa cells to glucose starvation. Mol Biol Rep 36(4):725–731

    Article  CAS  PubMed  Google Scholar 

  39. Shakhbazau A, Shcharbin D, Seviaryn I, Goncharova N, Kosmacheva S, Potapnev M, Gabara B, Ionov M, Bryszewska M (2009) Use of polyamidoamine dendrimers to engineer BDNF-producing human mesenchymal stem cells. Mol Biol Rep [Epub ahead of print]

  40. Hou X, Wu X, Ma J, Lv X, Jin X (2010) Erythropoietin augments the efficacy of therapeutic angiogenesis induced by allogenic bone marrow stromal cells in a rat model of limb ischemia. Mol Biol Rep 37(3):1467–12475

    Article  CAS  PubMed  Google Scholar 

  41. Chung N, Jee BK, Chae SW, Jeon YW, Lee KH, Rha HK (2009) HOX gene analysis of endothelial cell differentiation in human bone marrow-derived mesenchymal stem cells. Mol Biol Rep 36(2):227–235

    Article  CAS  PubMed  Google Scholar 

  42. Liu H, Fan H, Toh SL, Goh JC (2008) A comparison of rabbit mesenchymal stem cells and anterior cruciate ligament fibroblasts responses on combined silk scaffolds. Biomaterials 29(10):1443–1453

    Article  CAS  PubMed  Google Scholar 

  43. Jin B, Luo XP, Ni HC, Li Y, Shi HM (2009). Cardiac matrix remodeling following intracoronary cell transplantation in dilated cardiomyopathic rabbits. Mol Biol Rep [Epub ahead of print]

  44. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press

  45. Omoto M, Miyashita H, Shimmura S, Higa K, Kawakita T, Yoshida S, McGrogan M, Shimazaki J, Tsubota K (2009) The use of human mesenchymal stem cell-derived feeder cells for the cultivation of transplantable epithelial sheets. Invest Ophthalmol Vis Sci 50(5):2109–2115

    Article  PubMed  Google Scholar 

  46. Scott J, Selby M, Urdea M, Quiroga M, Bell GI, Rutter WJ (1983) Isolation and nucleotide sequence of a cDNA encoding the precursor of mouse nerve growth factor. Nature 302(5908):538–540

    Article  CAS  PubMed  Google Scholar 

  47. Stoeltzing O, Ahmad SA, Liu W, McCarty MF, Parikh AA, Fan F, Reinmuth N, Bucana CD, Ellis LM (2002) Angiopoietin-1 inhibits tumour growth and ascites formation in a murine model of peritoneal carcinomatosis. Br J Cancer 87(10):1182–1187

    Article  CAS  PubMed  Google Scholar 

  48. Yu BF, Li WI, Hu XN, Zhang YH, Niu B, Xie J (2009) Hepatocyte gene transfer mediated by stable polyplexes based on MPP-containing DNA complexes. Hepatobiliary Pancreat Dis Int 8(5):498–503

    CAS  PubMed  Google Scholar 

  49. Fang R, Nie H, Wang Z, Tu P, Zhou D, Wang L, He L, Zhou Y, Zhao J (2009) Protective immune response in BALB/c mice induced by a suicidal DNA vaccine of the MIC3 gene of Toxoplasma gondii. Vet Parasitol 164(2–4):134–140

    Article  CAS  PubMed  Google Scholar 

  50. Jiang Y, Wang Y, Kuang Y, Wang B, Li W, Gong T, Jiang Z, Yang D, Li M (2009) Expression of mouse beta-defensin-3 in MDCK cells and its anti-influenza-virus activity. Arch Virol 154(4):639–647

    Article  CAS  PubMed  Google Scholar 

  51. Kano FS, Tamekuni K, Coelho AL, Garcia JL, Vidotto O, Itano EN, Vidotto MC (2008) Induced immune response of DNA vaccine encoding an association MSP1a, MSP1b, and MSP5 antigens of Anaplasma marginale. Vaccine 26(27–28):3522–3527

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Yu Lou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, BS., Lou, JY. Recombinant expression of human nerve growth factor beta in rabbit bone marrow mesenchymal stem cells. Mol Biol Rep 37, 4083–4090 (2010). https://doi.org/10.1007/s11033-010-0068-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0068-4

Keywords

Navigation