Molecular Biology Reports

, Volume 37, Issue 7, pp 3207–3216 | Cite as

Identification of HSP27 as a potential tumor marker for colorectal cancer by the two-dimensional polyacrylamide gel electrophoresis

  • Weijie Liu
  • Yanlei Ma
  • Long Huang
  • Jiayuan Peng
  • Peng Zhang
  • Huizhen Zhang
  • Jie Chen
  • Huanlong Qin


The identification of specific biomarkers for colorectal cancer would provide the basis for early diagnosis, prognosis, therapy, as well as clues for understanding the molecular mechanisms governing cancer progression. This study was designed to use comparative proteomics technology to find the differentially expressed proteins between human colorectal carcinoma and the corresponding normal tumor-adjacent colorectal tissues. We have used the highly sensitive two-dimensional gel electrophoresis (2-DE) coupled with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF–MS) for the identification of proteins differentially expressed in tumoral and neighboring normal mucosa. We have detected differences in abundance of 42 proteins with statistical variance of the tumor versus normal spot volume ratio within the 95th confidence level (Student’s t-test; P < 0.05). 10 out of 42 analyzed proteins were unambiguously identified by MS coupled with database interrogation as being differentially expressed in colorectal cancer. Of the 10 newly implicated proteins, HSP27 was chosen for detailed analysis. Preliminary studies demonstrated that the differentially expressed proteins found by 2-DE could be confirmed and validated by western blotting and immunohistochemistry analyses in those few cases. The results suggest that HSP27 might be a potential biomarker for early diagnosis, prognosis, monitoring in the therapy of colorectal carcinoma.


Colorectal cancer Proteomics Biomarker HSP27 



We would like to express our grateful to the staff in the Research center for Proteome analysis, Shanghai Institutes for biological sciences for technical assistance. This work was financially supported by the Grants from Shanghai Science and Technology Development Fund (No. 05DJ14010), the Major Basic Research Program of Shanghai (No. 07DZ19505), and the National 973 Basic Research Program of China (No. 2008CB517403).


  1. 1.
    Weitz J, Koch M, Debus J, Hohler T, Galle PR, Buchler MW (2005) Colorectal cancer. Lancet 365:153–165CrossRefPubMedGoogle Scholar
  2. 2.
    Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, Feuer EJ et al (2005) Cancer statistics. CA Cancer J Clin 55:10–30CrossRefPubMedGoogle Scholar
  3. 3.
    Anderson L, Seilhamer J (1999) A comparison of selected mRNA and protein abundances in human liver. Electrophoresis 18:533–537CrossRefGoogle Scholar
  4. 4.
    Cole AR, Ji H, Simpson RJ (2000) Proteomic analysis of colonic crypts from normal, multiple intestinal neoplasia and p53—null mice: a comparison with colonic polyps. Electrophoresis 21:1772–1781CrossRefPubMedGoogle Scholar
  5. 5.
    Gordon JI, Smith DP, Alpers DH, Strauss AW (1982) Cloning of a cDNA encoding a portion of rat intestinal preapolipoprotein AIV mRNA. Biochemistry 21:5424–5431CrossRefPubMedGoogle Scholar
  6. 6.
    Mazzanti R, Solazzo M, Fantappié O, Elfering S, Pantaleo P, Bechi P, Cianchi F et al (2006) Differential expression proteomics of human colon cancer. Am J Physiol Gastrointest Liver Physiol 290:G1329–G1338CrossRefPubMedGoogle Scholar
  7. 7.
    Li C, Tan YX, Zhou H, Ding SJ, Li SJ, Ma DJ, Man XB et al (2005) Proteomic analysis of hepatitis B virus-associated hepatocellular carcinoma: Identification of potential tumor markers. Proteomics 5:1125–1139CrossRefPubMedGoogle Scholar
  8. 8.
    Petricoin EF, Zoon KC, Kohn EC, Barrett JC, Liotta LA (2002) Clinical proteomics: translating benchside promise into bedside reality. Nat Rev Drug Discov 1:683–695CrossRefPubMedGoogle Scholar
  9. 9.
    Li Z, Zhao X, Bai S, Wang Z, Chen L, Wei Y, Huang C (2008) Proteomics identification of cyclophilin A as a potential prognostic factor and therapeutic target in endometrial carcinoma. Mol Cell Proteomics 7:1810–1823CrossRefPubMedGoogle Scholar
  10. 10.
    Herrmann PC, Liotta LA, Petricoin EF III (2001) Cancer proteomics: the state of the art. Dis Markers 17:49–57PubMedGoogle Scholar
  11. 11.
    Grubb RL, Deng J, Pinto PA, Mohler JL, Chinnaiyan A, Rubin M, Linehan WM et al. (2009) Pathway Biomarker Profiling of Localized and Metastatic Human Prostate Cancer Reveal metastatic and prognostic signatures. J Proteome Res Apr 24 [Epub ahead of print]Google Scholar
  12. 12.
    Byrne JC, Downes MR, O’Donoghue N, O’Keane C, O’Neill A, Fan Y, Fitzpatrick JM et al (2009) 2D-DIGE as a strategy to identify serum markers for the progression of prostate cancer. J Proteome Res 8:942–957CrossRefPubMedGoogle Scholar
  13. 13.
    Park HJ, Kim BG, Lee SJ, Heo SH, Kim JY, Kwon TH, Lee EB et al (2008) Proteomic profiling of endothelial cells in human lung cancer. J Proteome Res 7:1138–1150CrossRefPubMedGoogle Scholar
  14. 14.
    Owling P, O’Driscoll L, Meleady P, Henry M, Roy S, Ballot J, Moriarty M et al (2007) 2-D difference gel electrophoresis of the lung squamous cell carcinoma versus normal sera demonstrates consistent alterations in the levels of ten specific proteins. Electrophoresis 28:4302–4310CrossRefGoogle Scholar
  15. 15.
    Sun W, Xing B, Sun Y, Du X, Lu M, Hao C, Lu Z et al (2007) Proteome analysis of hepatocellular carcinoma by two-dimensional difference gel electrophoresis. Mol Cell Proteomics 6:1798–1808CrossRefPubMedGoogle Scholar
  16. 16.
    Leth-Larsen R, Lund R, Hansen HV, Laenkholm AV, Tarin D, Jensen ON, Ditzel HJ (2009) Metastasis-related plasma membrane proteins of human breast cancer cells identified by comparative quantitative mass spectrometry. Mol Cell Proteomics Mar 24 [Epub ahead of print]Google Scholar
  17. 17.
    Huang HL, Stasyk T, Morandell S, Dieplinger H, Falkensammer G, Griesmacher A, Mogg M et al (2006) Biomarker discovery in breast cancer serum using 2-D differential gel electrophoresis/MALDI-TOF/TOF and data validation by routine clinical assays. Electrophoresis 27:1641–1650CrossRefPubMedGoogle Scholar
  18. 18.
    Qi YJ, He QY, Ma YF, Du YW, Liu GC, Li YJ, Tsao GS et al (2008) Proteomic identification of malignant transformation-related proteins in esophageal squamous cell carcinoma. J Cell Biochem 104:1625–1635CrossRefPubMedGoogle Scholar
  19. 19.
    Yoo C, Zhao J, Pal M, Hersberger K, Huber CG, Simeone DM, Beer DG, Lubman DM (2006) Automated integration of monolith-based protein separation with on-plate digestion for mass spectrometric analysis of esophageal adenocarcinoma human epithelial samples. Electrophoresis 27:3643–3651CrossRefPubMedGoogle Scholar
  20. 20.
    Faca VM, Song KS, Wang H, Zhang Q, Krasnoselsky AL, Newcomb LF, Plentz RR et al (2008) A mouse to human search for plasma proteome changes associated with pancreatic tumor development. PLoS Med 5:e123CrossRefPubMedGoogle Scholar
  21. 21.
    Hao Y, Yu Y, Wang L, Yan M, Ji J, Qu Y, Zhang J et al (2008) IPO-38 is identified as a novel serum biomarker of gastric cancer based on clinical proteomics technology. J Proteome Res 7:3668–3677CrossRefPubMedGoogle Scholar
  22. 22.
    Roessler M, Rollinger W, Mantovani-Endl L, Hagmann ML, Palme S, Berndt P, Engel AM et al (2006) Identification of PSME3 as a novel serum tumor marker for colorectal cancer by combining two-dimensional polyacrylamide gel electrophoresis with a strictly mass spectrometry-based approach for data analysis. Mol Cell Proteomics 5:2092–2101CrossRefPubMedGoogle Scholar
  23. 23.
    Alfonso P, Núñez A, Madoz-Gurpide J, Lombardia L, Sánchez L, Casal JI (2005) Proteomic expression analysis of colorectal cancer by two-dimensional differential gel electrophoresis. Proteomics 5:2602–2611CrossRefPubMedGoogle Scholar
  24. 24.
    Olesen SH, Christensen LL, Sørensen FB, Cabezón T, Laurberg S, Orntoft TF, Birkenkamp-Demtröder K (2005) Human FK506 binding protein 65 is associated with colorectal cancer. Mol Cell Proteomics 4:534–544CrossRefPubMedGoogle Scholar
  25. 25.
    Rabilloud T (2002) Two-dimensional gel electrophoresis in proteomics: old, old fashioned, but it still climbs up the mountains. Proteomics 2:3–10CrossRefPubMedGoogle Scholar
  26. 26.
    Friedman DB, Hill S, Keller JW, Merchant NB, Levy SE, Coffey RJ, Caprioli RM (2004) Proteome analysis of human colon cancer by two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics 4:793–811CrossRefPubMedGoogle Scholar
  27. 27.
    Yu LR, Zeng R, Shao XX, Wang N, Xu YH, Xia QC (2000) Identification of differentially expressed proteins between human hepatoma and normal liver cell lines by two-dimensional electrophoresis and liquid chromatography-ion trap mass spectrometry. Electrophoresis 21:3058–3068CrossRefPubMedGoogle Scholar
  28. 28.
    Yan JX, Wait R, Berkelman T, Harry RA, Westbrook JA, Wheeler CH, Dunn MJ (2000) A modified silver staining protocol for visualization of proteins compatible with matrix-assisted laser desorption/ionization and electrospray ionization-mass spectrometry. Electrophoresis 21:3666–3672CrossRefPubMedGoogle Scholar
  29. 29.
    Pei H, Zhu H, Zeng S, Li Y, Yang H, Shen L, Chen J et al (2007) Proteome analysis and tissue microarray for profiling protein markers associated with lymph node metastasis in colorectal cancer. J Proteome Res 6:2495–2501CrossRefPubMedGoogle Scholar
  30. 30.
    Zanini C, Pulerà F, Carta F, Giribaldi G, Mandili G, Maule MM, Forni M et al (2008) Proteomic identification of heat shock protein 27 as a differentiation and prognostic marker in neuroblastoma but not in Ewing’s sarcoma. Virchows Arch 452:157–167CrossRefPubMedGoogle Scholar
  31. 31.
    Luk JM, Lam CT, Siu AF, Lam BY, Ng IO, Hu MY, Che CM et al (2006) Proteomic profiling of hepatocellular carcinoma in Chinese cohort reveals heat-shock proteins (Hsp27, Hsp70, GRP78) up-regulation and their associated prognostic values. Proteomics 6:1049–1057CrossRefPubMedGoogle Scholar
  32. 32.
    Langer R, Ott K, Specht K, Becker K, Lordick F, Burian M, Herrmann K et al (2008) Protein expression profiling in esophageal adenocarcinoma patients indicates association of heat-shock protein 27 expression and chemotherapy response. Clin Cancer Res 15(14):8279–8287CrossRefGoogle Scholar
  33. 33.
    Guo K, Kang NX, Li Y, Sun L, Gan L, Cui FJ, Gao MD et al (2009) Regulation of HSP27 on NF-κB pathway activation may be involved in metastatic hepatocellular carcinoma cells apoptosis. BMC Cancer 31(9):100CrossRefGoogle Scholar
  34. 34.
    Doshi BM, Hightower LE, Lee J (2009) The role of Hsp27 and actin in the regulation of movement in human cancer cells responding to heat shock. Cell Stress Chaperones Feb 18 [Epub ahead of print]Google Scholar
  35. 35.
    Giaginis C, Daskalopoulou SS, Vgenopoulou S, Sfiniadakis I, Kouraklis G, Theocharis SE (2009) Heat shock protein-27, -60 and -90 expression in gastric cancer: association with clinicopathological variables and patient survival. BMC Gastroenterol 9(9):14CrossRefPubMedGoogle Scholar
  36. 36.
    Xiao G, Lu Q, Li C, Wang W, Chen Y, Xiao Z (2009) Comparative proteome analysis of human adenocarcinoma. Med Oncol Apr 21. [Epub ahead of print]Google Scholar
  37. 37.
    Wang Z, Jiang L, Huang C, Li Z, Chen L, Gou L, Chen P, Tong A et al (2008) Comparative proteomics approach to screening of potential diagnostic and therapeutic targets for oral squamous cell carcinoma. Mol Cell Proteomics 7:1639–1650CrossRefPubMedGoogle Scholar
  38. 38.
    Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME et al (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111CrossRefPubMedGoogle Scholar
  39. 39.
    Merck KB, Groenen PJ, Voorter CE, de Haard-Hoekman WA, Horwitz J, Bloemendal H, de Jong WWJ (1993) Structural and functional similarities of bovine alpha-crystallin and mouse small heat-shock protein. A family of chaperones. Biol Chem 268:1046–1052Google Scholar
  40. 40.
    Kim KK, Kim R, Kim SH (1998) Crystal structure of a small heat-shock protein. Nature 394:595–599CrossRefPubMedGoogle Scholar
  41. 41.
    Mosser DD, Morimoto RI (2004) Molecular chaperones and the stress of oncogenesis. Oncogene 23:2907–2918CrossRefPubMedGoogle Scholar
  42. 42.
    Concannon CG, Gorman AM, Samali A (2003) On the role of Hsp27 in regulating apoptosis. Apoptosis 8:61–70CrossRefPubMedGoogle Scholar
  43. 43.
    Parcellier A, Schmitt E, Gurbuxani S, Seigneurin-Berny D, Pance A, Chantôme A, Plenchette S et al (2003) HSP27 is a ubiquitin-binding protein involved in I-κBα proteasomal degradation. Mol Cell Biol 23:5790–5802CrossRefPubMedGoogle Scholar
  44. 44.
    Garrido C, Fromentin A, Bonnotte B, Favre N, Moutet M, Arrigo AP, Mehlen P et al (1998) Heat shock protein 27 enhances the tumorigenicity of immunogenic rat colon carcinoma cell clones. Cancer Res 58:5495–5499PubMedGoogle Scholar
  45. 45.
    Melle C, Bogumil R, Ernst G, Schimmel B, Bleul A, von Eggeling F (2006) Detection and identification of heat shock protein 10 as a biomarker in colorectal cancer by protein profiling. Proteomics 6:2600–2608CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Weijie Liu
    • 1
  • Yanlei Ma
    • 1
  • Long Huang
    • 2
  • Jiayuan Peng
    • 1
  • Peng Zhang
    • 1
  • Huizhen Zhang
    • 3
  • Jie Chen
    • 3
  • Huanlong Qin
    • 1
  1. 1.Department of SurgeryThe Sixth People’s Hospital Affiliated to Shanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.Department of SurgeryZhangjiagang First People’s HospitalJiangsuChina
  3. 3.Department of PathologyThe Sixth People’s Hospital Affiliated to Shanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations