Advertisement

Molecular Biology Reports

, Volume 37, Issue 7, pp 3165–3170 | Cite as

PriA participates in nascent DNA synthesis in Escherichia coli

  • Yen-Yu Chen
  • Helen Huang
  • Tzu-Chien V. Wang
Article
  • 85 Downloads

Abstract

The question of whether discontinuous DNA replication operates only for the lagging strand or for both strands in E. coli remains unresolved. In this study, the participation of priA, B, C and rep genes in discontinuous DNA replication was examined by analyzing the size distribution of nascent DNA synthesized in wild-type, lig-7 and polA4113 genetic backgrounds. Inactivation of priA, but not priB, priC or rep, resulted in a significant increase of high molecular weight (HMW) DNA in the short pulse-labeled DNA in the wild-type lig + polA + strains. Inactivation of priA also produced a significant increase of HMW DNA in the nascent DNA synthesized in lig-7 and polA4113 strains. These results indicate that PriA is involved in the discontinuous synthesis of nascent DNA.

Keywords

Discontinuous DNA replication PriA, B, C Rep Ligase Pol I 

Notes

Acknowledgements

We thank Dr. Kendric C. Smith for his helpful suggestions. This work was supported by Chang Gung Medical Research Grant CMRPD140013, and National Science Council Research Grant NSC95-2311-B182-008-MY3 of Taiwan.

References

  1. 1.
    Ogawa T, Okazaki T (1980) Discontinuous DNA replication. Annu Rev Biochem 49:421–457CrossRefPubMedGoogle Scholar
  2. 2.
    Wang TV (2005) Discontinuous or semi-discontinuous DNA replication in Escherichia coli? BioEssays 27:633–636CrossRefPubMedGoogle Scholar
  3. 3.
    Amado L, Kuzminov A (2006) The replication intermediates in Escherichia coli are not the product of DNA processing or uracil excision. J Biol Chem 281:22635–22646CrossRefPubMedGoogle Scholar
  4. 4.
    Blattner FR et al (1997) The complete genome sequence of Escherichia coli. Science 277:1453–1462CrossRefPubMedGoogle Scholar
  5. 5.
    Kornberg A, Baker TA (1991) DNA replication, 2nd edn. Freeman Press, San FranciscoGoogle Scholar
  6. 6.
    Marians KJ (1992) Prokaryotic DNA replication. Annu Rev Biochem 61:673–719CrossRefPubMedGoogle Scholar
  7. 7.
    Lane HE, Denhardt DT (1974) The rep mutation III. Altered structure of the replicating Escherichia coli chromosome. J Bacteriol 120:805–814PubMedGoogle Scholar
  8. 8.
    Lane HE, Denhardt DT (1975) The rep mutation IV. Slower movement of replication forks in Escherichia coli rep strains. J Mol Biol 97:99–112CrossRefPubMedGoogle Scholar
  9. 9.
    Gilchrist CA, Denhardt DT (1987) Escherichia coli rep gene: sequence of the gene, the encoded helicase, and its homology with UvrD. Nucleic Acids Res 26:465–473CrossRefGoogle Scholar
  10. 10.
    Lohman TM, Bjornson KP (1996) Mechanisms of helicase catalyzed DNA unwinding. Annu Rev Biochem 65:169–214CrossRefPubMedGoogle Scholar
  11. 11.
    Lee EH, Kornberg A (1991) Replication deficiencies in priA mutants of Escherichia coli lacking the primosomal replication n’ protein. Proc Natl Acad Sci USA 88:3029–3032CrossRefPubMedGoogle Scholar
  12. 12.
    Nurse P, Zavitz KH, Marians KJ (1991) Inactivation of the Escherichia coli PriA DNA replication protein induces the SOS response. J Bacteriol 173:6686–6693PubMedGoogle Scholar
  13. 13.
    Sandler SJ et al (1999) dnaC mutations suppress defects in DNA replication and recombination associated functions in priB and priC double mutants in E. coli K-12. Mol Microbiol 34:91–101CrossRefPubMedGoogle Scholar
  14. 14.
    Sandler SJ (2000) Multiple genetic pathways for restarting DNA replication forks in Escherichia coli K-12. Genetics 155:487–497PubMedGoogle Scholar
  15. 15.
    Sandler SJ, Marians KJ (2000) Role of PriA in replication fork reactivation in Escherichia coli. J Bacteriol 182:9–13CrossRefPubMedGoogle Scholar
  16. 16.
    Jaktaji RP, Lloyd RG (2003) PriA supports two distinct pathways for replication restart in UV-irradiated Escherichia coli cells. Mol Microbiol 47:1091–1100CrossRefPubMedGoogle Scholar
  17. 17.
    Heller RC, Marians KJ (2006) Replisome assembly and the direct restart of stalled replication forks. Nat Rev Mol Cell Biol 7:932–943CrossRefPubMedGoogle Scholar
  18. 18.
    Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  19. 19.
    Wang TV, Smith KC (1981) Effect of recB21, uvrD3, lexA101, recF143 mutations on ultraviolet radiation sensitivity and genetic recombination in uvrB strains of Escherichia coli K-12. Mol Gen Genet 183:37–44CrossRefPubMedGoogle Scholar
  20. 20.
    Wang TV, Smith KC (1989) Discontinuous DNA replication in a lig-7 strain of Escherichia coli is not the result of mismatch repair, nucleotide-excision repair, or the base-excision repair of DNA uracil. Biochem Biophys Res Commun 165:685–688CrossRefPubMedGoogle Scholar
  21. 21.
    Wang TV, Smith KC (1983) Mechanisms for the recF-dependent and recB-dependent pathways of postreplication repair in UV-irradiated Escherichia coli uvrB. J Bacteriol 156:1093–1098PubMedGoogle Scholar
  22. 22.
    Wang TV, Chen SH (1994) Okazaki DNA fragments contain equal amounts of lagging-strand and leading-strand sequences. Biochem Biophys Res Commun 198:844–849CrossRefPubMedGoogle Scholar
  23. 23.
    Okazaki R, Okazaki T, Sakabe K, Sugimoto K, Sugino A (1968) Mechanism of DNA chain growth, I. Possible discontinuity and unusual secondary structure of newly synthesized chains. Proc Natl Acad Sci USA 59:598–605CrossRefPubMedGoogle Scholar
  24. 24.
    Okazaki R, Arisawa M, Sugino A (1971) Slow joining of newly replicated DNA chains in DNA polymerase I-deficient Escherichia coli mutants. Proc Nat Acad Sci USA 68:2954–2957CrossRefPubMedGoogle Scholar
  25. 25.
    Uyemura D, Eichler DC, Lehman IR (1976) Biochemical characterization mutant forms of DNA polymerase I from Escherichia coli. J Biol Chem 251:4085–4089PubMedGoogle Scholar
  26. 26.
    Gottesman MM, Hicks ML, Gellert M (1973) Genetics and function of DNA ligase in Escherichia coli. J Mol Biol 77:531–547CrossRefPubMedGoogle Scholar
  27. 27.
    Konrad EB, Modrich P, Lehman IR (1974) DNA synthesis in strains of Escherichia coli K12 with temperature-sensitive DNA ligase and DNA polymerase I. J Mol Biol 90:115–126CrossRefPubMedGoogle Scholar
  28. 28.
    McGlynn P, Al-Deib AA, Liu J, Marians KL, Lloyd RG (1997) The DNA replication protein PriA and the recombination protein RecG bind D-loops. J Mol Biol 270:212–221CrossRefPubMedGoogle Scholar
  29. 29.
    Liu J, Marians KJ (1999) PriA-directed assembly of a primosome on D loop DNA. J Biol Chem 274:25033–25041CrossRefPubMedGoogle Scholar
  30. 30.
    Nurse P, Liu J, Marians KL (1999) Two modes of PriA binding to DNA. J Biol Chem 274:25026–25032CrossRefPubMedGoogle Scholar
  31. 31.
    Lee MS, Marians KJ (1989) The Escherichia coli primosome can translocate actively in either direction along a DNA strand. J Biol Chem 264:14531–14542PubMedGoogle Scholar
  32. 32.
    Kogoma T, Cadwell GW, Barnard KG, Asai T (1996) The DNA replication priming protein, PriA, is required for homologous recombination and double-strand break repair. J Bacteriol 178:1258–1264PubMedGoogle Scholar
  33. 33.
    Kuzminov A (1999) Recombinational repair of DNA damage in Escherichia coli and bacteriophage λ. Microbiol Mol Biol Rev 63:751–813PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Department of Molecular and Cellular BiologyChang Gung UniversityKwei-San, Tao-YuanTaiwan

Personalised recommendations