Skip to main content

Advertisement

Log in

Prediction and validation of conservative microRNAs of Solanum tuberosum L.

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Potato (Solanum tuberosum) is an important crop around the world, and accounts for a significant amount of the food consumed by humans. However, little information is available about potato miRNAs which play important regulatory roles in plant growth and development. In the present study, computational prediction of potential miRNAs from potato revealed 71 miRNAs belonging to 48 families. Amongst these 71 mRNAs, 65 were predicted for the first time. Most potato miRNA families have one to three members, and sequence analysis showed that the candidate pre-miRNA sequences varied from 48 to 224 bp in length. To verify the predicted miRNAs, specific stem-loop RT primers were designed and real-time PCR assays were used to profile the expression levels of seven miRNAs from different tissues of potato. The results showed that all the selected miRNAs were successfully amplified. Most of them had their highest expression levels in leaves, and the lowest levels in the stem, while miR159 and miR164 presented a different expression pattern. The specific expression levels of each miRNAs in the tested tissues may be related to their particular functions in regulating potato vegetative growth and organ development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

SAM:

Shoot apical meristem

EST:

Expressed sequence tags

MFEs:

Minimal free energies

MFEIs:

Minimal free energy index

RISC:

RNA-induced silencing complex

GAs:

Gibberellins

GAMYB:

Gibberellins Myeloblastosis

References

  1. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  2. Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520

    Article  CAS  PubMed  Google Scholar 

  3. Hunter C, Poethig RS (2003) miSSING LINKS: miRNAs and plant development. Curr Opin Genet Dev 13:372–378

    Article  CAS  PubMed  Google Scholar 

  4. Bao N, Lye KW, Barton MK (2004) MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev Cell 7:653–662

    Article  CAS  PubMed  Google Scholar 

  5. Bowman JL (2004) Class III HD-Zip gene regulation, the golden fleece of ARGONAUTE activity? Bioessays 26:938–942

    Article  CAS  PubMed  Google Scholar 

  6. Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL (2003) Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13:1768–1774

    Article  CAS  PubMed  Google Scholar 

  7. Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MC (2004) microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428:84–88

    Article  CAS  PubMed  Google Scholar 

  8. Kim J, Jung JH, Reyes JL, Kim YS, Kim SY, Chung KS, Kim JA, Lee M, Lee Y, Narry Kim V, Chua NH, Park CM (2005) microRNA-Directed cleavage of ATHB15 mRNA regulates vascular development in Arabidopsis inflorescence stems. Plant J 42:84–94

    Article  CAS  PubMed  Google Scholar 

  9. Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK, Bartel DP (2004) MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J 23:3356–3364

    Article  CAS  PubMed  Google Scholar 

  10. Zhong R, Ye ZH (2004) Amphivasal vascular bundle 1, a gain-of-function mutation of the IFL1/REV gene, is associated with alterations in the polarity of leaves, stems and carpels. Plant Cell Physiol 45:369–385

    Article  CAS  PubMed  Google Scholar 

  11. Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741

    Article  CAS  PubMed  Google Scholar 

  12. Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025

    Article  CAS  PubMed  Google Scholar 

  13. Guo HS, Xie Q, Fei JF, Chua NH (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for arabidopsis lateral root development. Plant Cell 17:1376–1386

    Article  CAS  PubMed  Google Scholar 

  14. Laufs P, Peaucelle A, Morin H, Traas J (2004) MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131:4311–4322

    Article  CAS  PubMed  Google Scholar 

  15. Mallory AC, Dugas DV, Bartel DP, Bartel B (2004) MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr Biol 14:1035–1046

    Article  CAS  PubMed  Google Scholar 

  16. Floyd SK, Bowman JL (2004) Gene regulation: ancient microRNA target sequences in plants. Nature 428:485–486

    Article  CAS  PubMed  Google Scholar 

  17. Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131:3357–3365

    Article  CAS  PubMed  Google Scholar 

  18. Lauter N, Kampani A, Carlson S, Goebel M, Moose SP (2005) microRNA172 Down-regulates glossy15 to promote vegetative phase change in maize. Proc Natl Acad Sci USA 102:9412–9417

    Article  CAS  PubMed  Google Scholar 

  19. Zhang B, Pan X, Stellwag EJ (2008) Identification of soybean microRNAs and their targets. Planta 229:161–182

    Article  CAS  PubMed  Google Scholar 

  20. Bryan GJ, Hein I (2008) Genomic resources and tools for gene function analysis in potato. Int J Plant Genomics 2008:216513

    PubMed  Google Scholar 

  21. Bentwich I (2005) Prediction and validation of microRNAs and their targets. FEBS Lett 579:5904–5910

    Article  CAS  PubMed  Google Scholar 

  22. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, Barbisin M, Xu NL, Mahuvakar VR, Andersen MR, Lao KQ, Livak KJ, Guegler KJ (2005) Real-time quantification of microRNAs by stem-loop RT–PCR. Nucleic Acids Res 33:e179

    Article  PubMed  Google Scholar 

  23. Feng J, Wang K, Liu X, Chen S, Chen J (2009) The quantification of tomato microRNAs response to viral infection by stem-loop real-time RT–PCR. Gene 437:14–21

    Article  CAS  PubMed  Google Scholar 

  24. Zhang W, Luo Y, Gong X, Zeng W, Li S (2009) Computational identification of 48 potato microRNAs and their targets. Comput Biol Chem 33:84–93

    Google Scholar 

  25. Yang T, Xue L, An L (2007) Functional diversity of miRNA in plants. Plant Sci 172:423–432

    Article  CAS  Google Scholar 

  26. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  Google Scholar 

  27. Yin Z, Li C, Han X, Shen F (2008) Identification of conserved microRNAs and their target genes in tomato (Lycopersicon esculentum). Gene 414:60–66

    Article  CAS  PubMed  Google Scholar 

  28. Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G, Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T (2003) A uniform system for microRNA annotation. RNA 9:277–279

    Article  CAS  PubMed  Google Scholar 

  29. Zhang BH, Pan XP, Cox SB, Cobb GP, Anderson TA (2006) Evidence that miRNAs are different from other RNAs. Cell Mol Life Sci 63:246–254

    Article  CAS  PubMed  Google Scholar 

  30. Axtell MJ, Bartel DP (2005) Antiquity of microRNAs and their targets in land plants. Plant Cell 17:1658–1673

    Article  CAS  PubMed  Google Scholar 

  31. Zhang B, Pan X, Cannon CH, Cobb GP, Anderson TA (2006) Conservation and divergence of plant microRNA genes. Plant J 46:243–259

    Article  CAS  PubMed  Google Scholar 

  32. Gocal GF, Sheldon CC, Gubler F, Moritz T, Bagnall DJ, MacMillan CP, Li SF, Parish RW, Dennis ES, Weigel D, King RW (2001) GAMYB-like genes, flowering, and gibberellin signaling in Arabidopsis. Plant Physiol 127:1682–1693

    Article  CAS  PubMed  Google Scholar 

  33. Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, Carrington JC (2003) P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev Cell 4:205–217

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the National High-Tech Development Project (863: 2008AA 10Z129).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jishuang Chen.

Additional information

Wenzheng Yang and Xin Liu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, W., Liu, X., Zhang, J. et al. Prediction and validation of conservative microRNAs of Solanum tuberosum L.. Mol Biol Rep 37, 3081–3087 (2010). https://doi.org/10.1007/s11033-009-9881-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9881-z

Keywords

Navigation