Advertisement

Molecular Biology Reports

, Volume 37, Issue 6, pp 2653–2663 | Cite as

β-Ionone-induced apoptosis in human osteosarcoma (U2os) cells occurs via a p53-dependent signaling pathway

  • Jiang Zhu
  • Lei Zhang
  • Xiaoming Jin
  • Xinying Han
  • Chuanhui Sun
  • Jinglong Yan
Article

Abstract

β-Ionone is a constituent of vegetables and fruits, and can induce apoptosis in some types of malignant cells. However, the mechanism of apoptosis in osteosarcoma (U2os) cells is currently unclear. In this study, we determined whether β-ionone can induce apoptosis in U2os cells in vitro and which signal pathway(s) is involved. We found that β-ionone inhibited cell proliferation in U2os cells in a concentration- and time-dependent manner and caused cell cycle arrest at the G1-S phase. TUNEL assay, DNA ladder and assessment of Caspase 3 activity showed that apoptosis was the determinant in the effects of β-ionone. Furthermore, Expression of the p53 protein increased in a concentration-dependent and time-dependent manner according to immunocytochemistry and immunoblotting after β-ionone treatment. In addition, β-ionone upregulated Bax protein and downregulated Bcl2 protein which led to Bax translocation and cytochrome c release, subsequently activated Caspase 3, thus resulting in apoptosis. In summary, these data suggested that β-ionone induced apoptosis in a concentration-dependent manner in U2os cells via a p53-dependent mitochondrial pathway.

Keywords

β-Ionone U2os Apoptosis p53-Dependent mitochondrial pathway 

References

  1. 1.
    Bacci G, Longhi A, Bertoni F et al (2005) Primary high-grade osteosarcoma: comparison between preadolescent and older patients. J Pediatr Hematol Oncol 27(3):129–134CrossRefPubMedGoogle Scholar
  2. 2.
    Elson CE, Yu SG (1994) The chemoprevention of cancer by mevalonate derived constituents of fruits and vegetables. J Nutr 124(5):607–614PubMedGoogle Scholar
  3. 3.
    Simkin AJ, Schwartz SH, Auldridge M et al (2004) The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles beta-ionone, pseudoionone, and geranylacetone. Plant J 40(6):882–892CrossRefPubMedGoogle Scholar
  4. 4.
    Liu JR, Chen BQ, Yang BF et al (2004) Apoptosis of human gastric adenocarcinoma cells induced by beta-ionone. World J Gastroenterol 10(3):348–351PubMedGoogle Scholar
  5. 5.
    Elson CE, Peffley DM, Hentosh P et al (1999) Isoprenoid-mediated inhibition of mevalonate synthesis: potential application to cancer. Proc Soc Exp Biol Med 221(4):294–311CrossRefPubMedGoogle Scholar
  6. 6.
    He L, Mo H, Hadisusilo S et al (1997) Isoprenoids suppress the growth of murine B16 melanomas in vitro and in vivo. J Nutr 127(5):668–674PubMedGoogle Scholar
  7. 7.
    Tatman D, Mo H (2002) Volatile isoprenoid constituents of fruits, vegetables and herbs cumulatively suppress the proliferation of murine B16 melanoma and human HL-60 leukemia cells. Cancer Lett 175(2):129–139CrossRefPubMedGoogle Scholar
  8. 8.
    Liu JR, Sun XR, Dong HW et al (2008) Beta-ionone suppresses mammary carcinogenesis, proliferative activity and induces apoptosis in the mammary gland of the Sprague-Dawley rat. Int J Cancer 122(12):2689–2698CrossRefPubMedGoogle Scholar
  9. 9.
    Yu SG, Anderson PJ, Elson CE (1995) Efficacy of β-ionone in the chemoprevention of rat mammary carcinogenesis. J Agric Food Chem 43:2144–2147CrossRefGoogle Scholar
  10. 10.
    Johnson MD, Woodard A, Okediji EJ et al (2002) Lovastatin is a potent inhibitor of meningioma cell proliferation: evidence for inhibition of a mitogen associated protein kinase. J Neurooncol 56(2):133–142CrossRefPubMedGoogle Scholar
  11. 11.
    Singletery K (2000) Diet, natural products and cancer chemoprevention. J Nutr 130(2S Suppl):465S–466SGoogle Scholar
  12. 12.
    de Moura Espíndola R, Mazzantini RP, Ong TP et al (2005) Geranylgeraniol and beta-ionone inhibit hepatic preneoplastic lesions, cell proliferation, total plasma cholesterol and DNA damage during the initial phases of hepatocarcinogenesis, but only the former inhibits NF-kappaB activation. Carcinogenesis 26(6):1091–1099CrossRefPubMedGoogle Scholar
  13. 13.
    Janakiram NB, Cooma I, Mohammed A et al (2008) Beta-ionone inhibits colonic aberrant crypt foci formation in rats, suppresses cell growth, and induces retinoid X receptor-alpha in human colon cancer cells. Mol Cancer Ther 7(1):181–190CrossRefPubMedGoogle Scholar
  14. 14.
    Liu JR, Yang YM, Dong HW et al (2005) Effect of β-ionone in human mammary cancer cells (Er-) by MAPK pathway. J Hygiene Res 34:706–709Google Scholar
  15. 15.
    Agarwal ML, Agarwal A, Taylor WR et al (1995) p53 controls both the G2/M and the G1 cell cycle checkpoints and mediates reversible growth arrest in human fibroblasts. Proc Natl Acad Sci USA 92:8493–8497CrossRefPubMedGoogle Scholar
  16. 16.
    Cory S, Huang DC, Adams JM (2003) The Bcl2 family: roles in cell survival and oncogenesis. Oncogene 22(53):8590–8607CrossRefPubMedGoogle Scholar
  17. 17.
    Li P, Nijhawan D, Budihardjo I et al (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91(4):479–489CrossRefPubMedGoogle Scholar
  18. 18.
    Deng Y, Wu X (2000) Peg3/Pw1 promotes p53-mediated apoptosis by inducing Bax translocation from cytosol to mitochondria. Proc Natl Acad Sci USA 97(22):12050–12055CrossRefPubMedGoogle Scholar
  19. 19.
    Bagci EZ, Vodovotz Y, Billiar TR et al (2006) Bistability in apoptosis: roles of Bax, Bcl2, and mitochondrial permeability transition pores. Biophys J 90(5):1546–1559CrossRefPubMedGoogle Scholar
  20. 20.
    Robertson JD, Orrenius S, Zhivotovsky B (2000) Review: nuclear events in apoptosis. J Struct Biol 129(2–3):346–358CrossRefPubMedGoogle Scholar
  21. 21.
    Shimizu S, Narita M, Tsujimoto Y (1999) Bcl-1 family proteins regulate the release of apoptogenic cytodhrome c by the mitochondrial channel VDAC. Nature 399:483–487CrossRefPubMedGoogle Scholar
  22. 22.
    Ayed-Boussema I, Bouaziz C, Rjiba K et al (2008) The mycotoxin Zearalenone induces apoptosis in human hepatocytes (HepG2) via p53-dependent mitochondrial signaling pathway. Toxicol In Vitro 22(7):1671–1680CrossRefPubMedGoogle Scholar
  23. 23.
    Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68:383–424CrossRefPubMedGoogle Scholar
  24. 24.
    Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281(5381):1312–1316CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Jiang Zhu
    • 1
  • Lei Zhang
    • 2
  • Xiaoming Jin
    • 2
  • Xinying Han
    • 2
  • Chuanhui Sun
    • 2
  • Jinglong Yan
    • 1
  1. 1.Department of OrthopedicsThe First Affiliated Hospital of Harbin Medical University, Harbin Medical UniversityNangang District, HarbinPeople’s Republic of China
  2. 2.Department of PathologyHarbin Medical UniversityHarbinPeople’s Republic of China

Personalised recommendations