Molecular Biology Reports

, Volume 37, Issue 6, pp 2635–2644 | Cite as

RNA interference: a potent technology in studying and modulating of dendritic cells, and potential in clinical therapy

  • Fang Cheng
  • Song He


RNA interference (RNAi) is a natural process by which small interfering RNA duplex directs sequencespecific post-transcriptional silencing of homologous genes by binding to its complementary mRNA and triggering its elimination. The history of RNAi has only about two decades, however, further studies have revealed that it is a potent method of gene silencing that has developed rapidly over the past few years as a result of its extensive importance in the study of genetics, molecular biology and physiology. RNAi technology has also recently yielded significant insight into dendritic cells (DCs) by helping to elucidate numerous mechanisms that regulate the development, activation and function of cells that mediate immunity. In addition, because of its ability to suppress gene expression effectively, this technique may be used to regulate the immune response for clinical purposes. As the key antigen presenting cells, DCs play a crucial part in the start of an immune response and in the enhancement and regulation of cell mediated immune reactions. The current studies indicated that targeting DCs with RNAi is a novel and effective therapeutic method for the fundamental research, and displayed great potential in clinical treatment.


RNA interference (RNAi) Dendritic cells (DCs) siRNA shRNA Immunotherapy Specific immune responses Vaccine 


  1. 1.
    Caplen NJ (2004) Gene therapy progress and prospects downregulating gene expression the impact of RNA interference. Gene Ther 11(16):1241–1248. doi: 10.1038/ CrossRefPubMedGoogle Scholar
  2. 2.
    Leung RK, Whittaker PA (2005) RNA interference: from gene silencing to gene-specific therapeutics. Pharmacol Ther 107(2):222–239. doi: 10.1016/j.pharmthera.2005.03.004 CrossRefPubMedGoogle Scholar
  3. 3.
    Shankar P, Manjunath N, Lieberman J (2005) The prospect of silencing disease using RNA interference. JAMA 293(11):1367–1373. doi: 10.1001/jama.293.11.1367 CrossRefPubMedGoogle Scholar
  4. 4.
    Kumar A (2008) RNA interference: a multifaceted innate antiviral defense. Retrovirology 5:17. doi: 10.1186/1742-4690-5-17 CrossRefPubMedGoogle Scholar
  5. 5.
    He S, Zhang D, Cheng F, Gong F, Guo Y (2009) Applications of RNA interference in cancer therapeutics as a powerful tool for suppressing gene expression. Mol Biol Rep. doi: 10.1007/s11033-008-9429-7
  6. 6.
    Mao CP, Lin YY, Hung CF, Wu TC (2007) Immunological research using RNA interference technology. Immunology 121(3):295–307. doi: 10.1111/j.1365-2567.2007.02599.x CrossRefPubMedGoogle Scholar
  7. 7.
    Vivier E, Malissen B (2005) Innate and adaptive immunity: specificities and signaling hierarchies revisited. Nat Immunol 6(1):17–21. doi: 10.1038/ni1153 CrossRefPubMedGoogle Scholar
  8. 8.
    Hoebe K, Janssen E, Beutler B (2004) The interface between innate and adaptive immunity. Nat Immunol 5(10):971–974. doi: 10.1038/ni1004-971 CrossRefPubMedGoogle Scholar
  9. 9.
    Seifert U, Marañón C, Shmueli A, Desoutter JF, Wesoloski L, Janek K, Henklein P, Diescher S, Andrieu M, de la Salle H, Weinschenk T, Schild H, Laderach D, Galy A, Haas G, Kloetzel PM, Reiss Y, Hosmalin A (2003) An essential role for tripeptidyl peptidase in the generation of an MHC class I epitope. Nat Immunol 4(4):375–379. doi: 10.1038/ni905 CrossRefPubMedGoogle Scholar
  10. 10.
    Kwon DS, Gregorio G, Bitton N, Hendrickson WA, Littman DR (2002) DC-SIGN-mediated internalization of HIV is required for trans-enhancement of T cell infection. Immunity 16(1):135–144. doi: 10.1016/S1074-7613(02)00259-5 CrossRefPubMedGoogle Scholar
  11. 11.
    Arrighi JF, Pion M, Wiznerowicz M, Geijtenbeek TB, Garcia E, Abraham S, Leuba F, Dutoit V, Ducrey-Rundquist O, van Kooyk Y, Trono D, Piguet V (2004) Lentivirus-mediated RNA interference of DC-SIGN expression inhibits human immunodeficiency virus transmission from dendritic cells to T cells. J Virol 78(20):10848–10855. doi: 10.1128/JVI.78.20.10848-10855.2004 CrossRefPubMedGoogle Scholar
  12. 12.
    Murdoch C, Muthana M, Lewis CE (2005) Hypoxia regulates macrophage functions in inflammation. J Immunol 175(10):6257–6263PubMedGoogle Scholar
  13. 13.
    Jantsch J, Chakravortty D, Turza N, Prechtel AT, Buchholz B, Gerlach RG, Volke M, Gläsner J, Warnecke C, Wiesener MS, Eckardt KU, Steinkasserer A, Hensel M, Willam C (2008) Hypoxia and hypoxia-inducible factor-1 alpha modulate lipopolysaccharide-induced dendritic cell activation and function. J Immunol 180(7):4697–4705PubMedGoogle Scholar
  14. 14.
    Schotte R, Nagasawa M, Weijer K, Spits H, Blom B (2004) The ETS transcription factor Spi-B is required for human plasmacytoid dendritic cell development. J Exp Med 200(11):1503–1509. doi: 10.1084/jem.20041231 CrossRefPubMedGoogle Scholar
  15. 15.
    Choi SC, Kim KD, Kim JT, Kim JW, Yoon DY, Choe YK, Chang YS, Paik SG, Lim JS (2003) Expression and regulation of NDRG2 (N-myc downstream regulated gene 2) during the differentiation of dendritic cells. FEBS Lett 553(3):413–418. doi: 10.1016/S0014-5793(03)01030-5 CrossRefPubMedGoogle Scholar
  16. 16.
    Choi SC, Kim KD, Kim JT, Kim JW, Lee HG, Kim JM, Jang YS, Yoon DY, Kim KI, Yang Y, Cho DH, Lim JS (2008) Expression of human NDRG2 by myeloid dendritic cells inhibits down-regulation of activated leukocyte cell adhesion molecule (ALCAM) and contributes to maintenance of T cell stimulatory activity. J Leukoc Biol 83(1):89–98. doi: 10.1189/jlb.0507300 CrossRefPubMedGoogle Scholar
  17. 17.
    Prechtel AT, Turza NM, Theodoridis AA, Steinkasserer A (2007) CD83 knockdown in monocyte-derived dendritic cells by small interfering RNA leads to a diminished T cell stimulation. J Immunol 178(9):5454–5464PubMedGoogle Scholar
  18. 18.
    Schütz S, Chemnitz J, Spillner C, Frohme M, Hauber J, Kehlenbach RH (2006) Stimulated expression of mRNAs in activated T cells depends on a functional CRM1 nuclear export pathway. J Mol Biol 358(4):997–1009. doi: 10.1016/j.jmb.2006.02.041 CrossRefPubMedGoogle Scholar
  19. 19.
    Prechtel AT, Chemnitz J, Schirmer S, Ehlers C, Langbein-Detsch I, Stülke J, Dabauvalle MC, Kehlenbach RH, Hauber J (2006) Expression of CD83 is regulated by HuR via a novel cis-active coding region RNA element. J Biol Chem 281(16):10912–10925. doi: 10.1074/jbc.M510306200 CrossRefPubMedGoogle Scholar
  20. 20.
    Fries B, Heukeshoven J, Hauber I, Grüttner C, Stocking C, Kehlenbach RH, Hauber J, Chemnitz J (2007) Analysis of nucleocytoplasmic trafficking of the HuR ligand APRIL and its influence on CD83 expression. J Biol Chem 282(7):4504–4515. doi: 10.1074/jbc.M608849200 CrossRefPubMedGoogle Scholar
  21. 21.
    Wu L, D’Amico A, Winkel KD, Suter M, Lo D, Shortman K (1998) RelB is essential for the development of myeloid-related CD8alpha- dendritic cells but not of lymphoid-related CD8alpha + dendritic cells. Immunity 9(6):839–847. doi: 10.1016/S1074-7613(00)80649-4 CrossRefPubMedGoogle Scholar
  22. 22.
    Ouaaz F, Arron J, Zheng Y, Choi Y, Beg AA (2002) Dendritic cell development and survival require distinct NF-kappaB subunits. Immunity 16(2):257–270. doi: 10.1016/S1074-7613(02)00272-8 CrossRefPubMedGoogle Scholar
  23. 23.
    Laderach D, Compagno D, Danos O, Vainchenker W, Galy A (2003) RNA interference shows critical requirement for NF-kappa B p50 in the production of IL-12 by human dendritic cells. J Immunol 171(4):1750–1757PubMedGoogle Scholar
  24. 24.
    Kim TW, Lee JH, He L, Boyd DA, Hardwick JM, Hung CF, Wu TC (2005) Modification of professional antigen-presenting cells with small interfering RNA in vivo to enhance cancer vaccine potency. Cancer Res 65(1):309–316PubMedGoogle Scholar
  25. 25.
    Peng S, Kim TW, Lee JH, Yang M, He L, Hung CF, Wu TC (2005) Vaccination with dendritic cells transfected with BAK and BAX siRNA enhances antigen-specific immune responses by prolonging dendritic cell life. Hum Gene Ther 16(5):584–593. doi: 10.1089/hum.2005.16.584 CrossRefPubMedGoogle Scholar
  26. 26.
    Kang TH, Lee JH, Bae HC, Noh KH, Kim JH, Song CK, Shin BC, Hung CF, Wu TC, Park JS, Kim TW (2006) Enhancement of dendritic cellbased vaccine potency by targeting antigen to endosomal/lysosomal compartments. Immunol Lett 106(2):126–134. doi: 10.1016/j.imlet.2006.05.004 CrossRefPubMedGoogle Scholar
  27. 27.
    Evel-Kabler K, Song XT, Aldrich M, Huang XF, Chen SY (2006) SOCS1 restricts dendritic cells’ ability to break self tolerance and induce antitumor immunity by regulating IL-12 production and signaling. J Clin Invest 116(1):90–100. doi: 10.1172/JCI26169 CrossRefPubMedGoogle Scholar
  28. 28.
    Song XT, Evel-Kabler K, Rollins L, Aldrich M, Gao F, Huang XF (2006) An alternative and effective HIV vaccination approach based on inhibition of antigen presentation attenuatorsin dendritic cells. PLoS Med 3(1):e11. doi: 10.1371/journal.pmed.0030011 CrossRefPubMedGoogle Scholar
  29. 29.
    Shen L, Evel-Kabler K, Strube R, Chen SY (2004) Silencing of SOCS1 enhances antigen presentation by dendritic cells and antigenspecific anti-tumor immunity. Nat Biotechnol 22(12):1546–1553. doi: 10.1038/nbt1035 CrossRefPubMedGoogle Scholar
  30. 30.
    Steinman RM, Adams JC, Cohn ZA (1975) Identification of a novel cell type in peripheral lymphoid organs of mice. IV. Identification and distribution in mouse spleen. J Exp Med 141(4):804–820PubMedGoogle Scholar
  31. 31.
    Kubo M, Hanada T, Yoshimura A (2003) Suppressors of cytokine signaling and immunity. Nat Immunol 4(12):1169–1176. doi: 10.1038/ni1012 CrossRefPubMedGoogle Scholar
  32. 32.
    Song HF, Zhou J, Pan K, Wang QJ, Wang H, Huang LX, Li YQ, Xia JC (2008) Antitumor effects and mechanisms of a dendritic cell vaccine which silenced SOCS1 by siRNA, stimulated by OK-432 and pulsed with lysate of HepG2 cells. Ai Zheng 27(7):685–691PubMedGoogle Scholar
  33. 33.
    Maldonado-López R, Moser M (2001) Dendritic cell subsets and the regulation of Th1/Th2 responses. Semin Immunol 13(5):275–282. doi: 10.1006/smim.2001.0323 CrossRefPubMedGoogle Scholar
  34. 34.
    Allavena P, Piemonti L, Longoni D, Bernasconi S, Stoppacciaro A, Ruco L, Mantovani A (1997) IL-10 prevents the generation of dendritic cells from CD14+ blood monocytes, promotes the differentiation to mature macrophages and stimulates endocytosis of FITC-dextran. Adv Exp Med Biol 417:323–327PubMedGoogle Scholar
  35. 35.
    De Smedt T, Van Mechelen M, De Becker G, Urbain J, Leo O, Moser M (1997) Effect of interleukin-10 on dendritic cell maturation and function. Eur J Immunol 27(5):1229–1235. doi: 10.1002/eji.1830270526 CrossRefPubMedGoogle Scholar
  36. 36.
    Banchereau J, Steinman RM (1998) Dendritic cells and the control of immunity. Nature 392(6673):245–252. doi: 10.1038/32588 CrossRefPubMedGoogle Scholar
  37. 37.
    Chhabra A, Chakraborty NG, Mukherji B (2008) Silencing of endogenous IL-10 in human dendritic cells leads to the generation of an improved CTL response against human melanoma associated antigenic epitope, MART-127–35. Clin Immunol 126(3):251–259. doi: 10.1016/j.clim.2007.11.011 CrossRefPubMedGoogle Scholar
  38. 38.
    Geijtenbeek TB, Kwon DS, Torensma R, van Vliet SJ, van Duijnhoven GC, Middel J, Cornelissen IL, Nottet HS, KewalRamani VN, Littman DR, Figdor CG, van Kooyk Y (2000) DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100(5):587–597. doi: 10.1016/S0092-8674(00)80694-7 CrossRefPubMedGoogle Scholar
  39. 39.
    McDonald D, Wu L, Bohks SM, KewalRamani VN, Unutmaz D, Hope TJ (2003) Recruitment of HIV and its receptors to dendritic cell-T cell junctions. Science 300(5623):1295–1297. doi: 10.1126/science.1084238 CrossRefPubMedGoogle Scholar
  40. 40.
    Steinman RM, Granelli-Piperno A, Pope M, Trumpfheller C, Ignatius R, Arrode G, Racz P, Tenner-Racz K (2003) The interaction of immunodeficiency viruses with dendritic cells. Curr Top Microbiol Immunol 276:1–30PubMedGoogle Scholar
  41. 41.
    Burns S, Cory GO, Vainchenker W, Thrasher AJ (2004) Mechanisms of WASp-mediated hematologic and immunologic disease. Blood 104(12):3454–3462. doi: 10.1182/blood-2004-04-1678 CrossRefPubMedGoogle Scholar
  42. 42.
    Badour K, Zhang J, Siminovitch KA (2003) The Wiskott–Aldrich syndrome protein: forging the link between actin and cell activation. Immunol Rev 192:98–112. doi: 10.1034/j.1600-065X.2003.00031.x CrossRefPubMedGoogle Scholar
  43. 43.
    Notarangelo LD, Ochs HD (2003) Wiskott-Aldrich syndrome: a model for defective actin reorganization, cell trafficking and synapse formation. Curr Opin Immunol 15(5):585–591. doi: 10.1016/S0952-7915(03)00112-2 CrossRefPubMedGoogle Scholar
  44. 44.
    Thrasher AJ (2002) WASp in immune-system organization and function. Nat Rev Immunol 2(9):635–646. doi: 10.1038/nri884 CrossRefPubMedGoogle Scholar
  45. 45.
    Derry JM, Kerns JA, Weinberg KI, Ochs HD, Volpini V, Estivill X, Walker AP, Francke U (1995) WASP gene mutations in Wiskott-Aldrich syndrome and X-linked thrombocytopenia. Hum Mol Genet 4(7):1127–1135. doi: 10.1093/hmg/4.7.1127 CrossRefPubMedGoogle Scholar
  46. 46.
    Dupuis-Girod S, Medioni J, Haddad E, Quartier P, Cavazzana-Calvo M, Le Deist F, de Saint Basile G, Delaunay J, Schwarz K, Casanova JL, Blanche S, Fischer A (2003) Autoimmunity in Wiskott-Aldrich syndrome: risk factors, clinical features, and outcome in a single-center cohort of 55 patients. Pediatrics 111(5 Pt 1):e622–e627. doi: 10.1542/peds.111.5.e622 CrossRefPubMedGoogle Scholar
  47. 47.
    de Noronha S, Hardy S, Sinclair J, Blundell MP, Strid J, Schulz O, Zwirner J, Jones GE, Katz DR, Kinnon C, Thrasher AJ (2005) Impaired dendritic cell homing in vivo in the absence of Wiskott Aldrich syndrome protein. Blood 105(4):1590–1597. doi: 10.1182/blood-2004-06-2332 CrossRefPubMedGoogle Scholar
  48. 48.
    Olivier A, Jeanson-Leh L, Bouma G, Compagno D, Blondeau J, Seye K, Charrier S, Burns S, Thrasher AJ, Danos O, Vainchenker W, Galy A (2006) A partial down-regulation of WASP is sufficient to inhibit podosome formation in dendritic cells. Mol Ther 13(4):729–737. doi: 10.1016/j.ymthe.2005.11.003 CrossRefPubMedGoogle Scholar
  49. 49.
    Kawai T, Akira S (2007) TLR signaling. Semin Immunol 19(1):24–32. doi: 10.1016/j.smim.2006.12.004 CrossRefPubMedGoogle Scholar
  50. 50.
    Kaisho T, Takeuchi O, Kawai T, Hoshino K, Akira S (2001) Endotoxin-induced maturation of MyD88-deficient dendritic cells. J Immunol 166(9):5688–5694PubMedGoogle Scholar
  51. 51.
    Schnare M, Barton GM, Holt AC, Takeda K, Akira S, Medzhitov R (2001) Toll-like receptors control activation of adaptive immune responses. Nat Immunol 2(10):947–950. doi: 10.1038/ni712 CrossRefPubMedGoogle Scholar
  52. 52.
    Zhu C, Xu H, Zhang G, Lu C, Ji M, Wu W (2008) Myeloid differentiation factor 88-silenced bone marrow-derived dendritic cells exhibit enhanced tolerogenicity in intestinal transplantation in rats. Transpl Proc 40(5):1625–1628. doi: 10.1016/j.transproceed.2008.01.070 CrossRefGoogle Scholar
  53. 53.
    Ryther RC, Flynt AS, Phillips JA 3rd, Patton JG (2005) siRNA therapeutics: big potential from small RNAs. Gene Ther 12(1):5–11. doi: 10.1038/ CrossRefPubMedGoogle Scholar
  54. 54.
    Carette JE, Overmeer RM, Schagen FH, Alemany R, Barski OA, Gerritsen WR, Van Beusechem VW (2004) Conditionally replicating adenoviruses expressing short hairpin RNAs silence the expression of a target gene in cancer cells. Cancer Res 64(8):2663–2667. doi: 10.1158/0008-5472.CAN-03-3530 CrossRefPubMedGoogle Scholar
  55. 55.
    Song J, Pang S, Lu Y, Yokoyama KK, Zheng JY, Chiu R (2004) Gene silencing in androgen-responsive prostate cancer cells from the tissue-specific prostate-specific antigen promoter. Cancer Res 64(21):7661–7663. doi: 10.1158/0008-5472.CAN-04-1751 CrossRefPubMedGoogle Scholar
  56. 56.
    Schiffelers RM, Ansari A, Xu J, Zhou Q, Tang Q, Storm G, Molema G, Lu PY, Scaria PV, Woodle MC (2004) Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res 32(19):e149. doi: 10.1093/nar/gnh140 CrossRefPubMedGoogle Scholar
  57. 57.
    Sumimoto H, Miyagishi M, Miyoshi H, Yamagata S, Shimizu A, Taira K, Kawakami Y (2004) Inhibition of growth and invasive ability of melanoma by inactivation of mutated BRAF with lentivirus-mediated RNA interference. Oncogene 23(36):6031–6039. doi: 10.1038/sj.onc.1207812 CrossRefPubMedGoogle Scholar
  58. 58.
    Sumimoto H, Yamagata S, Shimizu A, Miyoshi H, Mizuguchi H, Hayakawa T, Miyagishi M, Taira K, Kawakami Y (2005) Gene therapy for human small-cell lung carcinoma by inactivation of Skp-2 with virally mediated RNA interference. Gene Ther 12(1):95–100. doi: 10.1038/ CrossRefPubMedGoogle Scholar
  59. 59.
    Duxbury MS, Ito H, Benoit E, Zinner MJ, Ashley SW, Whang EE (2004) Retrovirally mediated RNA interference targeting the M2 subunit of ribonucleotide reductase: a novel therapeutic strategy in pancreatic cancer. Surgery 136(2):261–269. doi: 10.1016/j.surg.2004.04.029 CrossRefPubMedGoogle Scholar
  60. 60.
    Chen LM, Le HY, Qin RY, Kumar M, Du ZY, Xia RJ, Deng J (2005) Reversal of the phenotype by K-rasval12 silencing mediated by adenovirus-delivered siRNA in human pancreatic cancer cell line Panc-1. World J Gastroenterol 11(6):831–838PubMedGoogle Scholar
  61. 61.
    Uchida H, Tanaka T, Sasaki K, Kato K, Dehari H, Ito Y, Kobune M, Miyagishi M, Taira K, Tahara H, Hamada H (2004) Adenovirus-mediated transfer of siRNA against survivin induced apoptosis and attenuated tumor cell growth in vitro and in vivo. Mol Ther 10(1):162–171. doi: 10.1016/j.ymthe.2004.05.006 CrossRefPubMedGoogle Scholar
  62. 62.
    Brummelkamp TR, Bernards R, Agami R (2002) Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2(3):243–247. doi: 10.1016/S1535-6108(02)00122-8 CrossRefPubMedGoogle Scholar
  63. 63.
    Chen J, Wall NR, Kocher K, Duclos N, Fabbro D, Neuberg D, Griffin JD, Shi Y, Gilliland DG (2004) Stable expression of small interfering RNA sensitizes TEL-PDGFbetaR to inhibition with imatinib or rapamycin. J Clin Invest 113(12):1784–1791PubMedGoogle Scholar
  64. 64.
    Xu D, McCarty D, Fernandes A, Fisher M, Samulski RJ, Juliano RL (2005) Delivery of MDR1 small interfering RNA by self-complementary recombinant adenoassociated virus vector. Mol Ther 11(4):523–530. doi: 10.1016/j.ymthe.2004.12.019 CrossRefPubMedGoogle Scholar
  65. 65.
    Zheng L, Liu J, Batalov S, Zhou D, Orth A, Ding S, Schultz PG (2004) An approach to genomewide screens of expressed small interfering RNAs in mammalian cells. Proc Natl Acad Sci USA 101(1):135–140. doi: 10.1073/pnas.2136685100 CrossRefPubMedGoogle Scholar
  66. 66.
    Marques JT, Williams BR (2005) Activation of the mammalian immune system by siRNAs. Nat Biotechnol 23(11):1399–1405. doi: 10.1038/nbt1161 CrossRefPubMedGoogle Scholar
  67. 67.
    Sioud M (2005) Induction of inflammatory cytokines and interferon responses by double-stranded and single-stranded siRNAs is sequence-dependent and requires endosomal localization. J Mol Biol 348(5):1079–1090. doi: 10.1016/j.jmb.2005.03.013 CrossRefPubMedGoogle Scholar
  68. 68.
    Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A (2004) Rational siRNA design for RNA interference. Nat Biotechnol 22(3):326–330. doi: 10.1038/nbt936 CrossRefPubMedGoogle Scholar
  69. 69.
    Kim DH, Behlke MA, Rose SD, Chang MS, Choi S, Rossi JJ (2005) Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nat Biotechnol 23(2):222–226. doi: 10.1038/nbt1051 CrossRefPubMedGoogle Scholar
  70. 70.
    Chiu YL, Rana TM (2002) RNAi in human cells: basic structural and functional features of small interfering RNA. Mol Cell 10(3):549–561. doi: 10.1016/S1097-2765(02)00652-4 CrossRefPubMedGoogle Scholar
  71. 71.
    Elmen J, Thonberg H, Ljungberg K, Frieden M, Westergaard M, Xu Y, Wahren B, Liang Z, Orum H, Koch T, Wahlestedt C (2005) Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality. Nucleic Acids Res 33(1):439–447. doi: 10.1093/nar/gki193 CrossRefPubMedGoogle Scholar
  72. 72.
    Czauderna F, Fechtner M, Dames S, Aygun H, Klippel A, Pronk GJ, Giese K, Kaufmann J (2003) Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res 31(11):2705–2716. doi: 10.1093/nar/gkg393 CrossRefPubMedGoogle Scholar
  73. 73.
    Allerson CR, Sioufi N, Jarres R, Prakash TP, Naik N, Berdeja A, Wanders L, Griffey RH, Swayze EE, Bhat B (2005) Fully 2′-modified oligonucleotide duplexes with improved in vitro potency and stability compared to unmodified small interfering RNA. J Med Chem 48(4):901–904. doi: 10.1021/jm049167j CrossRefPubMedGoogle Scholar
  74. 74.
    Jackson AL, Burchard J, Leake D, Reynolds A, Schelter J, Guo J, Johnson JM, Lim L, Karpilow J, Nichols K, Marshall W, Khvorova A, Linsley PS (2006) Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. RNA 12(7):1197–1205. doi: 10.1261/rna.30706 CrossRefPubMedGoogle Scholar
  75. 75.
    Braasch DA, Jensen S, Liu Y, Kaur K, Arar K, White MA, Corey DR (2003) RNA interference in mammalian cells by chemically-modified RNA. Biochemistry 42(26):7967–7975. doi: 10.1021/bi0343774 CrossRefPubMedGoogle Scholar
  76. 76.
    Hall AH, Wan J, Shaughnessy EE, Ramsay Shaw B, Alexander KA (2004) RNA interference using boranophosphate siRNAs: structure–activity relationships. Nucleic Acids Res 32(20):5991–6000. doi: 10.1093/nar/gkh936 CrossRefPubMedGoogle Scholar
  77. 77.
    Parrish S, Fleenor J, Xu S, Mello C, Fire A (2000) Functional anatomy of a dsRNA trigger: differential requirement for the two trigger strands in RNA interference. Mol Cell 6(5):1077–1087. doi: 10.1016/S1097-2765(00)00106-4 CrossRefPubMedGoogle Scholar
  78. 78.
    Chiu YL, Rana TM (2003) siRNA function in RNAi: a chemical modifi cation analysis. RNA 9(9):1034–1048. doi: 10.1261/rna.5103703 CrossRefPubMedGoogle Scholar
  79. 79.
    Lorenz C, Hadwiger P, John M, Vornlocher HP, Unverzagt C (2004) Steroid and lipid conjugates of siRNAs to enhance cellular uptake and gene silencing in liver cells. Bioorg Med Chem Lett 14(19):4975–4977. doi: 10.1016/j.bmcl.2004.07.018 CrossRefPubMedGoogle Scholar
  80. 80.
    Cheng K, Ye Z, Guntaka RV, Mahato RI (2006) Enhanced hepatic uptake and bioactivity of type alpha1(I) collagen gene promoterspecific triplex-forming oligonucleotides after conjugation with cholesterol. J Pharmacol Exp Ther 317(2):797–805. doi: 10.1124/jpet.105.100347 CrossRefPubMedGoogle Scholar
  81. 81.
    Simeoni F, Morris MC, Heitz F, Divita G (2003) Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. Nucleic Acids Res 31:2717–2724. doi: 10.1093/nar/gkg385 CrossRefPubMedGoogle Scholar
  82. 82.
    Muratovska A, Eccles MR (2004) Conjugate for efficient delivery of short interfering RNA (siRNA) into mammalian cells. FEBS Lett 558(1–3):63–68. doi: 10.1016/S0014-5793(03)01505-9 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Laboratory Animal CenterXi’an Jiaotong University School of MedicineXi’anPeople’s Republic of China
  2. 2.Molecular Medicine & Tumor Research CenterChongqing Medical UniversityChongqingPeople’s Republic of China

Personalised recommendations