Advertisement

Molecular Biology Reports

, Volume 37, Issue 6, pp 2621–2628 | Cite as

Molecular cloning and expression characterization of translationally controlled tumor protein in silkworm pupae

  • Zuoming Nie
  • Zhengbing Lv
  • Jiawei Qian
  • Jian Chen
  • Shanshan Li
  • Qing Sheng
  • Dan Wang
  • Hongdan Shen
  • Wei Yu
  • Xiangfu Wu
  • Yaozhou Zhang
Article

Abstract

A Bombyx mori (B. mori) cDNA was isolated from silkworm pupae cDNA library encoding a homologue of translationally controlled tumor protein (BmTCTPk). BmTCTPk was expressed in E. coli; SDS–PAGE and Western blot showed the molecular weight of recombinant and native BmTCTPk is approximately 28 and 25 kDa, respectively; they are larger than the theoretical molecular weight. Immunohistochemical studies showed that BmTCTPk is uniformly distributed throughout the cytoplasm of BmN cells. In silkworm pupae, BmTCTPk is expressed in the midgut wall, the midgut cavity, and some fat body tissues lying between the midgut wall and body wall. Western blot and ELISAs performed on total protein extracts isolated from silkworm pupae at different development stages showed that, although BmTCTPk is expressed during all pupae stages, its expression level increases dramatically during late pupae stages, suggesting that BmTCTPk may play an important role during the developmental transition from pupa to imago.

Keywords

Translationally controlled tumor protein Silkworm pupae Expression analysis Immunohistochemical localization Subcellular localization 

Notes

Acknowledgments

This work was supported by financial grants from the National Basic Research Program of China (No. 2005CB121006), the National High Technology Research and Development Program (No. 2007AA021703, No. 2007AA100504).

References

  1. 1.
    Gross B, Gaestel M, Bohm H et al (1989) cDNA sequence coding for a translationally controlled human tumor protein. Nucleic Acids Res 17(20):8367CrossRefPubMedGoogle Scholar
  2. 2.
    Gachet Y, Tournier S, Lee M et al (1999) The growth-related, translationally controlled protein P23 has properties of a tubulin binding protein and associates transiently with microtubules during the cell cycle. J Cell Sci 112(Pt 8):1257–1271PubMedGoogle Scholar
  3. 3.
    Sanchez JC, Schaller D, Ravier F et al (1997) Translationally controlled tumor protein: a protein identified in several nontumoral cells including erythrocytes. Electrophoresis 18(1):150–155CrossRefPubMedGoogle Scholar
  4. 4.
    Arcuri F, Papa S, Meini A et al (2005) The translationally controlled tumor protein is a novel calcium binding protein of the human placenta and regulates calcium handling in trophoblast cells. Biol Reprod 73(4):745–751CrossRefPubMedGoogle Scholar
  5. 5.
    MacDonald SM, Rafnar T, Langdon J et al (1995) Molecular identification of an IgE-dependent histamine-releasing factor. Science 269(5224):688–690CrossRefPubMedGoogle Scholar
  6. 6.
    Bheekha-Escura R, MacGlashan DW, Langdon JM et al (2000) Human recombinant histamine-releasing factor activates human eosinophils and the eosinophilic cell line, AML14–3D10. Blood 96(6):2191–2198PubMedGoogle Scholar
  7. 7.
    MacDonald SM, Bhisutthibhan J, Shapiro TA et al (2001) Immune mimicry in malaria: Plasmodium falciparum secretes a functional histamine-releasing factor homolog in vitro and in vivo. Proc Natl Acad Sci USA 98(19):10829–10832CrossRefPubMedGoogle Scholar
  8. 8.
    Jung J, Kim M, Kim MJ et al (2004) Translationally controlled tumor protein interacts with the third cytoplasmic domain of Na, K-ATPase alpha subunit and inhibits the pump activity in HeLa cells. J Biol Chem 279(48):49868–49875CrossRefPubMedGoogle Scholar
  9. 9.
    Yoon T, Kim M, Lee K (2006) Inhibition of Na, K-ATPase-suppressive activity of translationally controlled tumor protein by sorting nexin 6. FEBS Lett 580(14):3558–3564CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang D, Li F, Weidner D et al (2002) Physical and functional interaction between myeloid cell leukemia 1 protein (MCL1) and Fortilin. The potential role of MCL1 as a fortilin chaperone. J Biol Chem 277(40):37430–37438CrossRefPubMedGoogle Scholar
  11. 11.
    Yang Y, Yang F, Xiong Z et al (2005) An N-terminal region of translationally controlled tumor protein is required for its antiapoptotic activity. Oncogene 24(30):4778–4788CrossRefPubMedGoogle Scholar
  12. 12.
    Yenofsky R, Bergmann I, Brawerman G (1982) Cloned complementary deoxyribonucleic acid probes for untranslated messenger ribonucleic acid components of mouse sarcoma ascites cells. Biochemistry 21(17):3909–3913CrossRefPubMedGoogle Scholar
  13. 13.
    Li F, Zhang D, Fujise K (2001) Characterization of fortilin, a novel antiapoptotic protein. J Biol Chem 276(50):47542–47549CrossRefPubMedGoogle Scholar
  14. 14.
    Sage-Ono K, Ono M, Harada H et al (1998) Dark-induced accumulation of mRNA for a homolog of translationally controlled tumor protein (TCTP) in Pharbitis. Plant Cell Physiol 39(3):357–360PubMedGoogle Scholar
  15. 15.
    Sturzenbaum SR, Kille P, Morgan AJ (1998) Identification of heavy metal induced changes in the expression patterns of the translationally controlled tumour protein (TCTP) in the earthworm Lumbricus rubellus1. Biochim Biophys Acta 1398(3):294–304PubMedGoogle Scholar
  16. 16.
    Predic J, Soskic V, Bradley D et al (2002) Monitoring of gene expression by functional proteomics: response of human lung fibroblast cells to stimulation by endothelin-1. Biochemistry 41(3):1070–1078CrossRefPubMedGoogle Scholar
  17. 17.
    Vercoutter-Edouart AS, Czeszak X, Crepin M et al (2001) Proteomic detection of changes in protein synthesis induced by fibroblast growth factor-2 in MCF-7 human breast cancer cells. Exp Cell Res 262(1):59–68CrossRefPubMedGoogle Scholar
  18. 18.
    Bonnet C, Perret E, Dumont X et al (2000) Identification and transcription control of fission yeast genes repressed by an ammonium starvation growth arrest. Yeast 16(1):23–33CrossRefPubMedGoogle Scholar
  19. 19.
    Rupec RA, Poujol D, Kaltschmidt C et al (1998) Isolation of a hypoxia-induced cDNA with homology to the mammalian growth-related protein p23. Oncol Res 10(2):69–74PubMedGoogle Scholar
  20. 20.
    Andree H, Thiele H, Fahling M et al (2006) Expression of the human TPT1 gene coding for translationally controlled tumor protein (TCTP) is regulated by CREB transcription factors. Gene 380(2):95–103CrossRefPubMedGoogle Scholar
  21. 21.
    Lee JM, Kusakabe T, Kawaguchi Y et al (2004) Molecular cloning and characterization of the translationally controlled tumor protein gene in Bombyx mori. Comp Biochem Physiol B Biochem Mol Biol 139(1):35–43CrossRefPubMedGoogle Scholar
  22. 22.
    Hsu YC, Chern JJ, Cai Y et al (2007) Drosophila TCTP is essential for growth and proliferation through regulation of dRheb GTPase. Nature 445(7129):785–788CrossRefPubMedGoogle Scholar
  23. 23.
    Nie Z, Xu J, Chen J et al (2009) Expression analysis and characteristics of profilin gene from silkworm, Bombyx mori. Appl Biochem Biotechnol 158(1):59–71CrossRefPubMedGoogle Scholar
  24. 24.
    Thaw P, Baxter NJ, Hounslow AM et al (2001) Structure of TCTP reveals unexpected relationship with guanine nucleotide-free chaperones. Nat Struct Biol 8(8):701–704CrossRefPubMedGoogle Scholar
  25. 25.
    Armstrong DJ, Roman A (1993) The anomalous electrophoretic behavior of the human papillomavirus type 16 E7 protein is due to the high content of acidic amino acid residues. Biochem Biophys Res Commun 192(3):1380–1387CrossRefPubMedGoogle Scholar
  26. 26.
    Alves VS, Pimenta DC, Sattlegger E et al (2004) Biophysical characterization of Gir2, a highly acidic protein of Saccharomyces cerevisiae with anomalous electrophoretic behavior. Biochem Biophys Res Commun 314(1):229–234CrossRefPubMedGoogle Scholar
  27. 27.
    Garcia-Ortega L, De los Rios V, Martinez-Ruiz A et al (2005) Anomalous electrophoretic behavior of a very acidic protein: ribonuclease U2. Electrophoresis 26(18):3407–3413CrossRefPubMedGoogle Scholar
  28. 28.
    Bhisutthibhan J, Pan XQ, Hossler PA et al (1998) The Plasmodium falciparum translationally controlled tumor protein homolog and its reaction with the antimalarial drug artemisinin. J Biol Chem 273(26):16192–16198CrossRefPubMedGoogle Scholar
  29. 29.
    Teshima S, Rokutan K, Nikawa T et al (1998) Macrophage colony-stimulating factor stimulates synthesis and secretion of a mouse homolog of a human IgE-dependent histamine-releasing factor by macrophages in vitro and in vivo. J Immunol 161(11):6356–6366PubMedGoogle Scholar
  30. 30.
    Rinnerthaler M, Jarolim S, Heeren G et al (2006) MMI1 (YKL056c, TMA19), the yeast orthologue of the translationally controlled tumor protein (TCTP) has apoptotic functions and interacts with both microtubules and mitochondria. Biochim Biophys Acta 1757(5–6):631–638PubMedGoogle Scholar
  31. 31.
    Gnanasekar M, Rao KV, Chen L et al (2002) Molecular characterization of a calcium binding translationally controlled tumor protein homologue from the filarial parasites Brugia malayi and Wuchereria bancrofti. Mol Biochem Parasitol 121(1):107–118CrossRefPubMedGoogle Scholar
  32. 32.
    Rao KV, Chen L, Gnanasekar M et al (2002) Cloning and characterization of a calcium-binding, histamine-releasing protein from Schistosoma mansoni. J Biol Chem 277(34):31207–31213CrossRefPubMedGoogle Scholar
  33. 33.
    Thiele H, Berger M, Skalweit A et al (2000) Expression of the gene and processed pseudogenes encoding the human and rabbit translationally controlled tumour protein (TCTP). Eur J Biochem 267(17):5473–5481CrossRefPubMedGoogle Scholar
  34. 34.
    Huang Z, Zhong Y, Deng X et al (2006) Observation of the midgut and silk gland in silkworm during pupal-adult metamorphosis. Journal of South China Agricultural University 27(2):4Google Scholar
  35. 35.
    Bommer UA, Borovjagin AV, Greagg MA et al (2002) The mRNA of the translationally controlled tumor protein P23/TCTP is a highly structured RNA, which activates the dsRNA-dependent protein kinase PKR. RNA 8(4):478–496CrossRefPubMedGoogle Scholar
  36. 36.
    Xu A, Bellamy AR, Taylor JA (1999) Expression of translationally controlled tumour protein is regulated by calcium at both the transcriptional and post-transcriptional level. Biochem J 342(Pt 3):683–689CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Zuoming Nie
    • 1
  • Zhengbing Lv
    • 1
  • Jiawei Qian
    • 1
  • Jian Chen
    • 1
  • Shanshan Li
    • 1
  • Qing Sheng
    • 1
  • Dan Wang
    • 1
  • Hongdan Shen
    • 1
  • Wei Yu
    • 1
  • Xiangfu Wu
    • 1
  • Yaozhou Zhang
    • 1
  1. 1.Institute of BiochemistryZhejiang Sci-Tech UniversityHangzhouPeople’s Republic of China

Personalised recommendations