Advertisement

Molecular Biology Reports

, 37:955 | Cite as

Molecular identification of oriental medicinal plant Anemarrhena asphodeloides Bunge (‘Jimo’) by multiplex PCR

  • Baigalmaa Jigden
  • Hongtao Wang
  • Narantuya Samdan
  • Deok-Chun Yang
Article

Abstract

Anemarrhena asphodeloides Bunge (Jimo) is one of the most popular and valuable plant species in many countries, including China, Korea, and Japan. The current commercial products such as Sagan, Chog-chag-yag, and Shig-ban-pung which are most similar to Jimo roots, were used for more reliable authentication method. Polymerase chain reaction (PCR) analysis of the trnL-F region has been proved to be an appropriate method for the identification of species in the A. asphodeloides genus. A single nucleotide polymorphism (SNP) has been identified in Jimo, Sagan, Chog-chag-yag, and Shig-ban-pung. The specific PCR primers were designed from the SNP to differentiate the A. asphodeloides (Jimo) from Sagan, Chog-chag-yag, and Shig-ban-pung via multiplex PCR. The established multiplex-PCR method for the rapid detection of the Jimo in a single reaction was determined to be effective for the differentiation of Jimo (A. asphodeloides). We therefore present an effective method for the genetic identification of the A. asphodeloides.

Keywords

Anemarrhena asphodeloides trnL-F Single nucleotide polymorphism Multiplex PCR 

Notes

Acknowledgments

This research was supported by a grant (07092KFDA335) from Korea Food & Drug Administration in 2007.

References

  1. 1.
    Zhang J, Meng Z, Zhang M, Ma D, Xu S, Kodama H (1999) Effect of six steroidal saponins isolated from Anemarrhenae rhizoma on platelet aggregation and hemolysis in human blood. Clin Chim Acta 289:79–88CrossRefPubMedGoogle Scholar
  2. 2.
    Kimura I, Nakashima N, Sugihara Y, Chen FJ, Kimura M (1999) The antihyperglycaemic blend effect of traditional chinese medicine byakko-ka-ninjin-to on alloxan and diabetic kk-cay mice. Phytother Res 13:484–488CrossRefPubMedGoogle Scholar
  3. 3.
    Bao W, Pan H, Lu M, Ni Y, Zhang R, Gong X (2007) The apoptotic effect of sarsasapogenin from Anemarrhena asphodeloides on HepG2 human hepatoma cells. Cell Biol Int 31:887–892CrossRefPubMedGoogle Scholar
  4. 4.
    Zhou T, Zhu Z, Wang C, Fan G, Peng J, Chai Y, Wu Y (2007) On-line purity monitoring in high-speed counter-current chromatography: application of HSCCC-HPLC-DAD for the preparation of 5-HMF, neomangiferin and mangiferin from Anemarrhena asphodeloides bunge. J Pharm Biomed 44:96–100CrossRefGoogle Scholar
  5. 5.
    Jeong SJ, Higuchi R, Ono M, Kuwano M, Kim YC, Miyamoto T (2003) Cis-hinokiresinol, a norlignan from Anemarrhena asphodeloides, inhibits angiogenic response in vitro and in vivo. Biol Pharm Bull 26:1721–1724CrossRefPubMedGoogle Scholar
  6. 6.
    Hu YE, Xia ZQ, Sun QX, Orisi A, Rees D (2005) A new approach to the pharmacological regulation of memory: sarsasapogenin improves memory by elevating the low muscarinic acetylcholine receptor density in brains of memory deficit rat models. Brain Res 1060:26–39CrossRefPubMedGoogle Scholar
  7. 7.
    Tsukamoto S, Wakana T, Koimaru K, Yoshida T, Sato M, Ohta T (2005) 7-Hydroxy-3-(4-hydroxybenzyl) chroman and broussonin b: neurotrophic compounds, isolated from Anemarrhena asphodeloides bunge, function as proteasome inhibitors. Biol Pharm Bull 28:1798–1800CrossRefPubMedGoogle Scholar
  8. 8.
    Iida Y, Oh KB, Saito M, Matsuoka H, Kurata H (2000) In vitro synergism between nyasol, an active compound isolated from Anemarrhena asphodeloides, and azole agents against Candida albicans. Planta Med 66:435–438CrossRefPubMedGoogle Scholar
  9. 9.
    Oh JK, Hyun SY, Oh HR, Jung JW, Park C, Lee SY (2007) Effects of Anemarrhena asphodeloides on focal ischemic brain injury induced by middle cerebral artery occlusion in rats. Biol Pharm Bull 30:38–43CrossRefPubMedGoogle Scholar
  10. 10.
    Ngan F, Shaw P, But P, Wang J (1999) Molecular authentication of panax species. Phytochemistry 50:787–791CrossRefPubMedGoogle Scholar
  11. 11.
    Cui LCK, Yip KL, Dong TT, Tsim KW (2003) Authentication of Panax notoginseng by 5S-rRNA spacer domain and random amplified polymorphic DNA (RAPD) analysis. Planta Med 69:584–586CrossRefPubMedGoogle Scholar
  12. 12.
    Shim YH, Choi JH, Park CD, Lim CJ, Cho JH, Kim HJ (2003) Molecular differentiation of panax species by RAPD analysis. Arch Pharm Res 26:601–605CrossRefPubMedGoogle Scholar
  13. 13.
    Ha WY, Shaw PC, Liu J, Yau FC, Wang J (2002) Authentication of Panax ginseng and Panax quinquefolius using amplified fragment length polymorphism (AFLP) and directed amplification of minisatellite region DNA (DAMD). J Agric Food Chem 50:1871–1875CrossRefPubMedGoogle Scholar
  14. 14.
    Choi YE, Ahn CH, Kim BB, Yoon ES (2008) Development of species specific AFLP-derived SCAR marker for authentication of Panax japonicus C. A. Meyer. Biol Pharm Bull 31:135–138CrossRefPubMedGoogle Scholar
  15. 15.
    Wang J, Ha WY, Ngan FN, But PP, Shaw PC (2001) Application of sequence characterized amplified region (SCAR) analysis to authenticate Panax species and their adulterants. Planta Med 67:781–783CrossRefPubMedGoogle Scholar
  16. 16.
    Sasaki Y, Komatsu K, Nagumo S (2008) Rapid detection of Panax ginseng by loop-mediated isothermal amplification and its application to authentication of ginseng. Biol Pharm Bull 31:1806–1808CrossRefPubMedGoogle Scholar
  17. 17.
    Zhu S, Fushimi H, Komatsu K (2008) Development of a DNA microarray for authentication of ginseng drugs based on 18S rRNA gene sequence. J Agric Food Chem 56:3953–3959CrossRefPubMedGoogle Scholar
  18. 18.
    Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding region of chloroplast DNA. Plant Mol Biol 17:1105–1109CrossRefPubMedGoogle Scholar
  19. 19.
    Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  20. 20.
    Chen F, Chan HE, Wong KL, Wang J, Yu MT, But PPH, Shaw PC (2008) Authentication of Saussurea lappa, an endangered medicinal material, by ITS DNA and 5S rRNA sequencing. Planta Med 74:889–892CrossRefPubMedGoogle Scholar
  21. 21.
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876CrossRefGoogle Scholar
  22. 22.
    Amicucci A, Guidi C, Zambonelli A, Potenza L, Stocchi V (2002) Molecular approaches for the detection of truffle species in processed food products. J Sci Food Agric 82:1391–1397CrossRefGoogle Scholar
  23. 23.
    Olmstead RG, Palmer JD (1994) Chloroplast DNA systematics: a review of methods and data analysis. Am J Bot 81:1204–1224CrossRefGoogle Scholar
  24. 24.
    Aagesen L, Medan D, Kellermann J, Hilger HH (2005) Phylogeny of the tribe Colletieae (Rhamnaceae)-a sensitivity analysis of the plastid region trnL-trnF combined with morphology. Plant Syst Evol 250:197–214CrossRefGoogle Scholar
  25. 25.
    Lang P, Dand F, Kubisiak TL (2006) Phylogeny of Castanea (Fagaceae) based on chloroplast trnT-L-F sequence data. Tree Genet Genomes 2:132–139CrossRefGoogle Scholar
  26. 26.
    Shaw J, Lickey EB, Beck JT, Farmer SB, Liu W, Miller J, Siripun KC, Winder CT, Schilling EE, Small RL (2005) The tortoise and the hare II: relative utility of 21 noncoding chloroplast DNA sequences for phylogenetic analysis. Am J Bot 92:142–166CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Baigalmaa Jigden
    • 1
    • 2
  • Hongtao Wang
    • 1
  • Narantuya Samdan
    • 2
  • Deok-Chun Yang
    • 1
  1. 1.Department of Oriental Medicinal Material & Processing, College of Life ScienceKyung Hee UniversityYongin-siSouth Korea
  2. 2.Health Sciences University of MongoliaUlaanbaatarMongolia

Personalised recommendations