Molecular Biology Reports

, Volume 38, Issue 1, pp 675–681 | Cite as

Specific post-transcriptional inhibition of mRNA for ligand binding chain of IgE high affinity receptor



IgE high affinity receptor (FcεRI) plays an important role in triggering type I allergic reactions. In this study, we have investigated the ability of four synthetic and sequence-specific RNA interfering antisense oligodeoxynucleotides (AS-ODNs) to reduce the expression of FcεRIα gene in granulocytes of allergy sufferers in vitro. Only AS1 out of four AS-ODNs specifically inhibited the FcεRIα gene expression and the dose response assay revealed that AS1 was capable of specific inhibition of target mRNA expression over a linear concentration range without affecting the expression of house keeping genes such as glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Together, these results indicate that sequence-specific RNA interfering ODNs can be effectively used to silence the expression of key genes like IgE high affinity receptor that are involved in chronic inflammatory diseases.


High affinity receptor of IgE (FcεRI) Alpha subunit of FcεRI (FcεRIα) Antisense oligodeoxynucleotides (AS-ODNs) 


  1. 1.
    Meltzer EO (2003) The role of the immune system in the pathogenesis of asthma and an overview of the diagnosis, classification, and current approach to treating the disease. J Manag Care Pharm 9:8–13PubMedGoogle Scholar
  2. 2.
    Davies RJ, Rusznak C, Devalia JL (1998) Why is allergy increasing?—environmental factors. Clin Exp Allergy 28(Suppl. 6):8–14CrossRefPubMedGoogle Scholar
  3. 3.
    Howarth PH (1998) Is allergy increasing?—early life influences. Clin Exp Allergy 28(Suppl. 6):2–7CrossRefPubMedGoogle Scholar
  4. 4.
    Gendo K, Larson EB (2004) Evidence based diagnostic strategies for evaluating suspected allergic rhinitis. Ann Intern Med 140:278–289PubMedGoogle Scholar
  5. 5.
    Dombrowicz D, Flamand V, Brigman KK, Koller BH, Kinet JP (1993) Abolition of anaphylaxis by targeted disruption of the high affinity immunoglobulin E receptor alpha chain gene. Cell 75:969–976CrossRefPubMedGoogle Scholar
  6. 6.
    Saini SS, Richardson JJ, Wofsy C, Lavens-Phillips S, Bochner BS, Macglashan DW Jr (2001) Expression and modulation of FcεRIα and FcεRIβ in human blood basophils. J Allergy Clin Immunol 107:832–841CrossRefPubMedGoogle Scholar
  7. 7.
    Gounni AS, Lamkhioued B, Ochiai K, Tanaka Y, Delaporte E, Capron A, Kinet JP, Capron M (1994) High-affinity IgE receptor on eosinophils is involved in defense against parasites. Nature 367:183–186CrossRefPubMedGoogle Scholar
  8. 8.
    Maurer D, Fiebiger E, Reininger B, Woff-Winski B, Jouvin MH, Kilgus O, Kinet JP, Stingl G (1994) Expression of functional high affinity immunoglobulin E receptors (FcεRI) on monocytes of atopic individuals. J Exp Med 179:745–750CrossRefPubMedGoogle Scholar
  9. 9.
    Bieber T, de la Salle H, Wollenberg A, Hakimi J, Chizzonite R, Ring J, Hanau D, de la Salle C (1992) Human epidermal Langerhans cells express the high affinity receptor for immunoglobulin E (FcεRI). J Exp Med 175:1285–1290CrossRefPubMedGoogle Scholar
  10. 10.
    Wang B, Rieger A, Kilgus O, Ochiai K, Maurer D, Fodinger D, Kinet JP, Stingl G (1992) Epidermal Langerhans cells from normal human skin bind monomeric IgE via FcεRI. J Exp Med 175:1353–1365CrossRefPubMedGoogle Scholar
  11. 11.
    Joseph M, Gounni AS, Kusnierz JP, Vorng H, Sarfati M, Kinet JP, Tonnel AB, Capron A, Capron M (1997) Expression and functions of the high affinity IgE receptor on human platelets and megakaryocyte precursors. Eur J Immunol 27:2212–2218CrossRefPubMedGoogle Scholar
  12. 12.
    Hasegawa S, Pawankar R, Suzuki K, Nakahata T, Furukawa S, Okumura K, Ra C (1999) Functional expression of the high affinity receptor for IgE (FcεRI) in human platelets and its intracellular expression in human megakaryocytes. Blood 93:2543–2551PubMedGoogle Scholar
  13. 13.
    Gounni AS, Lamkhioued B, Koussih L, Ra C, Renzi PM, Hamid Q (2001) Human neutrophils express the high-affinity receptor for immunoglobulin E (FcεRI): role in asthma. FASEB J 15:940–949CrossRefPubMedGoogle Scholar
  14. 14.
    Hansen I, Klimek L, Mösges R, Hörmann K (2004) Mediators of inflammation in the early and the late phase of allergic rhinitis. Curr Opin Allergy Clin Immunol 4(3):159–163CrossRefPubMedGoogle Scholar
  15. 15.
    Sutton BJ, Gould HJ (1993) The human IgE network. Nature 366:421–428CrossRefPubMedGoogle Scholar
  16. 16.
    Ra C, Jouvin M-HE, Kinet JP (1989) Complete structure of the mouse mast cell receptor for IgE (FcεRI) and surface expression of chimeric receptors (rat-mouse-human) on transfected cells. J Biol Chem 264:15323–15327PubMedGoogle Scholar
  17. 17.
    Kinet JP (1999) The high-affinity IgE receptor (FcεRI): from physiology to pathology. Annu Rev Immunol 17:931–972CrossRefPubMedGoogle Scholar
  18. 18.
    Mahato RI, Cheng K, Guntaka RV (2005) Modulation of gene expression by antisense and antigene oligodeoxynucleotides and small interfering RNA. Expert Opin Drug Deliv 2(1):3–28CrossRefPubMedGoogle Scholar
  19. 19.
    Scherer LJ, Rossi JJ (2003) Approaches for the sequence-specific knockdown of mRNA. Nat Biotechnol 21(12):1457–1465CrossRefPubMedGoogle Scholar
  20. 20.
    Sahu NK, Shilakari G, Nayak A, Kohli DV (2007) Antisense technology: a selective tool for gene expression regulation and gene targeting. Curr Pharm Biotechnol 8(5):291–304CrossRefPubMedGoogle Scholar
  21. 21.
    Law AW, Reed SD, Sundy JS, Schulman KA (2003) Direct costs of allergic rhinitis in the United States: estimates from the 1996 Medical Expenditure Panel Survey. J Allergy Clin Immunol 111:296–300CrossRefPubMedGoogle Scholar
  22. 22.
    Metzger H (1992) Transmembrane signaling: the joy of aggregation. J Immunol 149:1477–1487PubMedGoogle Scholar
  23. 23.
    Sihra BS, Kon OM, Grant JA, Kay AB (1997) Expression of high-affinity IgE receptors (FcεRI) on peripheral blood basophils, monocytes, and eosinophils in atopic and nonatopic subjects: relationship to total serum IgE concentrations. J Allergy Clin Immunol 99(5):699–706CrossRefPubMedGoogle Scholar
  24. 24.
    Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: Double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33CrossRefPubMedGoogle Scholar
  25. 25.
    Zamore PD (2002) Ancient pathways programmed by small RNAs. Science 296:1265–1269CrossRefPubMedGoogle Scholar
  26. 26.
    Crooke ST (1999) Molecular mechanisms of action of antisense drugs. Biochim Biophys Acta 1489:31–44PubMedGoogle Scholar
  27. 27.
    Crouch RJ, Dirksen ML (1982). Ribonucleases H. In: Linn SM, Roberts RJ (eds) Nuclease, 2nd edn. Cold Spring Harbor, New York, pp 211–241Google Scholar
  28. 28.
    Lima WF, Wu H, Crooke ST (2001) Human RNases H. Method Enzymol 341:430–440CrossRefGoogle Scholar
  29. 29.
    Vickers TA, Koo S, Bennett CF, Crooke ST, Dean NM, Baker BF (2003) Efficient reduction of target RNAs by small interfering RNA and RNase H-dependent antisense agents. A comparative analysis. J Biol Chem 278(9):7108–7118CrossRefPubMedGoogle Scholar
  30. 30.
    Popescue FD (2005) Antisense- and RNA interference-based therapeutic strategies in allergy. J Cell Mol Med 9(4):840–853CrossRefGoogle Scholar
  31. 31.
    Monia BP, Johnston JF, Geiger T, Muller M, Fabbro D (1996) Antitumour activity of a phosphorothioate antisense oligodeoxynucleotide targeted against C-raf kinase. Nat Med 2:668–675CrossRefPubMedGoogle Scholar
  32. 32.
    Bacon TA, Wickstrom E (1991) Walking along human c-myc mRNA with antisense oligodeoxynucleotides: maximum efficacy at the 5′ cap region. Oncogene Res 6:13–19PubMedGoogle Scholar
  33. 33.
    Dash P, Lotan I, Knapp M, Kandel ER, Goelet P (1987) Selective elimination of mRNAs in vivo: complementary oligodeoxynucleotides promote RNA degradation by an RNase H-like activity. Proc Natl Acad Sci USA 84:7896–7900CrossRefPubMedGoogle Scholar
  34. 34.
    Walder RY, Walder JA (1988) Role of RNase H in hybrid arrested translation by antisense oligonucleotides. Proc Natl Acad Sci USA 85:5011–5015CrossRefPubMedGoogle Scholar
  35. 35.
    Stein CA, Subasinghe C, Shinozuka K, Cohen JS (1988) Physicochemical properties of phosphorothioate oligodeoxynucleotides. Nucleic Acids Res 16:3209–3221CrossRefPubMedGoogle Scholar
  36. 36.
    Stein CA, Tonkinson JL, Zhang LM, Yakubov L, Gervasoni J, Taub R, Rotenberg SA (1993) Dynamics of the internalization of phosphodiester oligodeoxynucleotides in HLa 60 cells. Biochemistry 32:4855–4861CrossRefPubMedGoogle Scholar
  37. 37.
    Asai K, Kitaura J, Kawakami Y, Yamagata N, Tsai M, Carbone DP, Liu FT, Galli SJ, Kawakami T (2001) Regulation of mast cell survival by IgE. Immunity 14(6):791–800CrossRefPubMedGoogle Scholar
  38. 38.
    Kalesnikoff J, Huber M, Lam V, Damen JE, Zhang J, Siraganian RP, Krystal G (2001) Monomeric IgE stimulates signaling pathways in mast cells that lead to cytokine production and cell survival. Immunity 14:801–811CrossRefPubMedGoogle Scholar
  39. 39.
    Hasegawa M, Nishiyama C, Nishiyama M, Akizawa Y, Takahashi K, Ito T, Furukawa S, Ra C, Okumura K, Ogawa H (2003) A novel—66T > C polymorphism in FcεRI α-chain promoter affecting the transcription activity: possible relationship to allergic diseases. J Immunol 171:1927–1933PubMedGoogle Scholar
  40. 40.
    Shikanai T, Silverman ES, Morse BW, Lilly CM, Inoue H, Drazen JM (2002) Sequence variants in the FcεRI alpha chain gene. J Appl Physiol 93:37–41PubMedGoogle Scholar
  41. 41.
    Potaczek DP, Sanak M, Mastalerz L, Setkowicz M, Kaczor M, Nizankowska E, Szczeklik A (2006) The α-chain of high-affinity receptor for IgE (FcεRIα) gene polymorphisms and serum IgE levels. Allergy 61:1230–1233CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.Molecular and Cell Biology Laboratory, Department of Physiology and Cell BiologyUniversity of Health Sciences (UHS)LahorePakistan
  2. 2.Department of Pharmacology and Therapeutics, Riphah Institute of Pharmaceutical SciencesRiphah International UniversityIslamabadPakistan

Personalised recommendations