Skip to main content
Log in

A simple artificial microRNA vector based on ath-miR169d precursor from Arabidopsis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Artificial microRNA (amiRNA) is becoming a powerful tool for silencing genes in plants, and several amiRNA vectors have recently been developed based on the natural precursor structures of ath-miR159a, ath-miR164b, ath-miR172a, ath-miR319a and osa-miR528. In this study we generated a simple amiRNA vector (pAmiR169d) based on the structure of Arabidopsis miR169d precursor (pre-miR169d). Two unique restriction sites were created inside the stem region of pre-miR169d, which allows for the artificial miRNA sequences to be cloned as either ~80 bp synthetic oligonucleotides or PCR products. A β-glucuronidase:green florescent protein fusion gene (GUS-GFP) was efficiently silenced in transient assays using a pAmiR169d-derived construct targeting the GUS-GFP sequence. 5′-RACE showed that the target GUS-GFP transcript was cleaved precisely at the expected position across nucleotides 10 and 11 of the artificial miRNA. Thus, pAmiR169d allows for both easy construction of artificial miRNA constructs and efficient silencing of target genes in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brodersen P, Voinnet O (2006) The diversity of RNA silencing pathways in plants. Trends Genet 22:268–280

    Article  CAS  PubMed  Google Scholar 

  2. Long D, Lee R, Williams P et al (2005) Principles of microRNA-target recognition. PLoS Biol 3:e85

    Article  Google Scholar 

  3. Llave C, Kasschau KD et al (2002) Endogenous and silencing-associated small RNAs in plants. Plant Cell 14:1605–1619

    Article  CAS  PubMed  Google Scholar 

  4. Hervé V, Vazquez F, Crété P et al (2004) The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 18:1187–1197

    Article  Google Scholar 

  5. Niu Q-W, Lin S-S, Reyes J-L et al (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat Biotechnol 24:1420–1428

    Article  CAS  PubMed  Google Scholar 

  6. Zeng Y, Wagner EJ, Cullen BR (2002) Both natural and designed microRNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 9:1327–1333

    Article  CAS  PubMed  Google Scholar 

  7. Parizotto E-A, Dunoyer P, Rahm N et al (2004) In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev 18:2237–2242

    Article  CAS  PubMed  Google Scholar 

  8. Warthmann N, Chen H, Ossowski S et al (2008) Highly specific gene silencing by artificial miRNAs in rice. PLoS ONE 3:e1829

    Article  PubMed  Google Scholar 

  9. Schwab R, Ossowski S, Riester M et al (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133

    Article  CAS  PubMed  Google Scholar 

  10. Schwab R, Palatnik JF, Riester M et al (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517–527

    Article  CAS  PubMed  Google Scholar 

  11. Wang L, Wang M-B, Tu J-X, Helliwell C-A et al (2007) Cloning and characterization of microRNAs from Brassica napus. FEBS Lett 581:3848–3856

    Article  CAS  PubMed  Google Scholar 

  12. Wang L, Zhao J, Fan Y-L (2002) Cloning and function analysis of ABP9 protein which specifically binds toABRE2 motif of maize Cat1 gene. Chin Sci Bull 47(22):1871–1875

    Article  CAS  Google Scholar 

  13. Wang L, Luo Y-Z, Zhang L et al (2008) Rolling circle amplification-mediated hairpin RNA (RMHR) library construction in plants. Nucleic Acids Res 22:e149

    Article  Google Scholar 

  14. Ossowski S, Schwab R, Weigel D (2007) Gene silencing in plants using artificial microRNAs and other small RNAs. Plant cell 53:674–690

    Google Scholar 

  15. Ding Y, Chan C-Y, Charles E, Lawrence (2004) Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res 32:w135–w141

    Article  CAS  PubMed  Google Scholar 

  16. Long D, Lee R, Williams P et al (2007) Potent effect of target structure on microRNA function. Nat Struct Mol Biol 4:1038–1226

    Google Scholar 

  17. Kertesz M, Iovino N, Unnerstall U et al (2007) The role of site accessibility in microRNA target recognition. Nat Genet 39:1278–1285

    Article  CAS  PubMed  Google Scholar 

  18. Wang MB, Helliwell CA, Wu LM et al (2008) Hairpin RNAs derived from RNA polymerase II and polymerase III promoter-directed transgenes are processed differently in plants. RNA 14(5):903–913

    Article  CAS  PubMed  Google Scholar 

  19. Khraiwesh B, Ossowski S, Weigel D et al (2008) Specific gene silencing by artificial microRNAs in Physcomitrella patens: an alternative to targeted gene knockouts. Plant Physiol 148:684–693

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Basic Research Program [Grant Numbers 2007CB109004]; and National High Technology Research and Development Program of China [Grant Number 2007AA10Z147].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C., Zhang, L., Sun, J. et al. A simple artificial microRNA vector based on ath-miR169d precursor from Arabidopsis. Mol Biol Rep 37, 903–909 (2010). https://doi.org/10.1007/s11033-009-9713-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9713-1

Keywords

Navigation