Skip to main content

Advertisement

Log in

Molecular cloning and localization of a calpain-like protease from the abdominal muscle of Norway lobster Nephrops norvegicus

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Calpains are ubiquitous cysteine-proteases found in many, if not all, living organisms and their roles within these organisms are diverse, ranging from the mediation of cytoskeletal remodeling to the regulation of gene expression. In crustaceans calpains have so far been shown to be important mainly during moulting and growth. In the present study we report the expression of a calpain in the abdominal muscle of Norway lobster (Nephrops norvegicus) using degenerate primer, rapid amplification of cDNA ends (5′-3′-RACE), reverse transcriptase-PCR and RNA in situ hybridization approaches. The full-length mRNA sequence (2,774 bp) was found to include an open reading frame (bp 225–1,940) encoding a 572 amino acid polypeptide with a predicted mass of 65.9 kDa and a predicted pI of 5.17. The calpain was found to be an arthropod M-class calpain homologue to Homarus americanus Calpain M (Ha-CalpM) and has thus been termed Nephrops norvegicus calpain M (Nn-CalpM). When its expression pattern in abdominal muscle of adult intermoult Nephrops norvegicus was investigated an exclusive expression in a thin layer of connective tissue cells surrounding muscle fibres was found. This localization suggests a role in tenderizing connective tissue networks during growth and moulting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goll DE, Thompson VF, Li H, Wei W, Cong J (2003) The calpain system. Physiol Rev 83:731–801. doi:10.1152/physrev.00029.2002

    CAS  PubMed  Google Scholar 

  2. Wang JH, Ma WC, Su JC, Chen CS, Jiang ST (1993) Comparison of the properties of m-calpain from Tilapia and grass shrimp muscles. J Agric Food Chem 41:1379–1384. doi:10.1021/jf00033a007

    Article  CAS  Google Scholar 

  3. Mykles DL, Skinner DM (1986) Four Ca2+-dependent proteinase activities isolated from crustacean muscle differ in size, net charge, and sensitivity to Ca2+ and inhibitors. J Biol Chem 261:9865–9871

    CAS  PubMed  Google Scholar 

  4. Yu X, Mykles DL (2003) Cloning of a muscle-specific calpain from the American lobster Homarus americanus: expression associated with muscle atrophy and restoration during moulting. J Exp Biol 206:561–575. doi:10.1242/jeb.00097

    Article  CAS  PubMed  Google Scholar 

  5. Medler S, Chang ES, Mykles DL (2007) Muscle-specific calpain is localized in regions near motor endplates in differentiating lobster claw muscle. Comp Biochem Physiol A 148:591–598. doi:10.1016/j.cbpa.2007.08.008

    Article  Google Scholar 

  6. Kim HW, Chang ES, Mykles DL (2005) Three calpains and ecdysone receptor in the land crab Gecarcinus lateralis: sequences, expression and effects of elevated ecdysteroid induced by eyestalk ablation. J Exp Biol 208:3177–3197. doi:10.1242/jeb.01754

    Article  CAS  PubMed  Google Scholar 

  7. Beyette JR, Mykles DL (1997) Autolysis and biochemical properties of a lobster muscle calpainlike proteinase. J Exp Zool 277:106–119

    Article  CAS  Google Scholar 

  8. Aiken DE (1980) Moulting and growth. In: Cobb JS, Phillips BF (eds) The biology and management of lobsters, 1st edn. Academic Press, New York and London, pp 91–164

    Google Scholar 

  9. Brown C (1998) In situ hybridization with riboprobes: an overview for veterinary pathologists. Vet Pathol 35:159–167

    Article  CAS  PubMed  Google Scholar 

  10. Braissant OL, Wahli W (1998) A simplified in situ-hybridization protocol using non-radioactively labeled probes to detect abundant and rare mRNAs on tissue sections. Biochemica 1:10–16

    Google Scholar 

  11. Croall DE, Demartino GN (1991) Calcium-activated neutral protease (calpain) system: structure, function, and regulation. Physiol Rev 71:813–847

    CAS  PubMed  Google Scholar 

  12. Croall D, Ersfeld K (2007) The calpains: modular designs and functional diversity. Genome Biol 8:218. doi:10.1186/gb-2007-8-6-218

    Article  PubMed  Google Scholar 

  13. Sorimachi H, Suzuki K (2001) The structure of calpain. J Biochem 129:653–664

    CAS  PubMed  Google Scholar 

  14. Moldoveanu T, Hosfield CM, Lim D, Elce JS, Jia ZC, Davies PL (2002) A Ca2+ switch aligns the active site of calpain. Cell 108:649–660. doi:10.1016/S0092-8674(02)00659-1

    Article  CAS  PubMed  Google Scholar 

  15. Moldoveanu T, Jia ZC, Davies PL (2004) Calpain activation by cooperative Ca2+ binding at two non-EF-hand sites. J Biol Chem 279:6106–6114. doi:10.1074/jbc.M310460200

    Article  CAS  PubMed  Google Scholar 

  16. Lee HJ, Sorimachi H, Jeong SY, Ishiura S, Suzuki K (1998) Molecular cloning and characterization of a novel tissue-specific calpain predominantly expressed in the digestive tract. Bio Chem 379:175–183

    Article  CAS  Google Scholar 

  17. Mykles DL, Skinner DM (1981) Preferential loss of thin filaments during molt-induced atrophy in crab claw muscle. J Ultrastruct Res 75:314–325

    Article  CAS  PubMed  Google Scholar 

  18. Mykles DL, Skinner DM (1985) The role of calcium-dependent proteinases in molt-induced claw muscle atrophy. Prog Clin Biol Res 180:141–150

    CAS  PubMed  Google Scholar 

  19. Kumamoto T, Kleese WC, Cong YJ, Goll DE, Pierce PR, Allen RE (1992) Localization of the Ca2+-dependent proteinases and their inhibitor in normal, fasted, and denervated rat skeletal muscle. Anat Rec 232:60–77

    Article  CAS  PubMed  Google Scholar 

  20. Kinbara K, Sorimachi H, Ishiura S, Suzuki K (1998) Skeletal muscle-specific calpain, p49: structure and physiological function. Biochem Pharmacol 56:415–420. doi:10.1016/S0006-2952(98)00095-1

    Article  CAS  PubMed  Google Scholar 

  21. Taylor RG, Geesink GH, Thompson VF, Koohmaraie M, Goll DE (1995) Is Z-disk degradation responsible for post-mortem tenderization? J Anim Sci 73:1351–1367

    CAS  PubMed  Google Scholar 

  22. Richard I, Broux O, Allamand V, Fougerousse F, Chiannilkulchai N, Bourg N, Brenguier L, Devaud C, Pasturaud P, Roudaut C (1995) Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell 81:27–40. doi:10.1016/0092-8674(95)90368-2

    Article  CAS  PubMed  Google Scholar 

  23. Lebart M, Benyamin Y (2006) Calpain involvement in the remodeling of cytoskeletal anchorage complexes. FEBS J 273:3415–3426. doi:10.1111/j.1742-4658.2006.05350.x

    Article  CAS  PubMed  Google Scholar 

  24. Bitsch C, Bitsch J (2002) The endoskeletal structures in arthropods: cytology, morphology and evolution. Arthropod Struct Dev 30:159–177. doi:10.1016/S1467-8039(01)00032-9

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the EU Financial Instrument for Fisheries Guidance (FIFG) Scheme through the Scottish Executive, and by Young’s Seafood Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. G. Gornik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gornik, S.G., Westrop, G.D., Coombs, G.H. et al. Molecular cloning and localization of a calpain-like protease from the abdominal muscle of Norway lobster Nephrops norvegicus . Mol Biol Rep 37, 2009–2019 (2010). https://doi.org/10.1007/s11033-009-9652-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9652-x

Keywords

Navigation