Molecular Biology Reports

, Volume 37, Issue 1, pp 435–440 | Cite as

Polymorphisms in the promoter region of bovine PRKAB1 gene

  • Qin Zhang
  • Hong Chen
  • Sheng Zhao
  • Li Zhang
  • Liangzhi Zhang
  • Xueming Wang


The AMP-activated protein kinase (AMPK) is an evolutionarily conserved sensor of cellular and systemic energy balance. PRKAB1, the gene that encodes the β1 regulatory subunit of AMPK, has been shown to be highly involved in the glycogen metabolism. To date, several mutations affecting function of human PRKAB1 have been identified, but few studies have shown a complete description of variability of the promoter region of PRKAB1. Therefore, the extent of genetic polymorphisms in the promoter region of PRKAB1 gene was investigated in a sample of 811 Chinese indigenous bovine individuals using a PCR-SSCP (single strand conformation polymorphism) strategy. Sequence analysis revealed 12 single nucleotide polymorphisms and one 10 bp insertion and one 4 bp deletion variations, which are within some important transcription factor binding sites: GC-Box factors SP1/GC, PAX-3 binding sites, zinc binding protein factors, nuclear respiratory factor 1, and serum response element binding factor. It is expected that these polymorphisms regulate PRKAB1 gene transcription and might have consequences at a regulatory level.


AMP-activated protein kinase beta 1 subunit gene Promoter region Single nucleotide polymorphism Cattle 



This study was supported by the National 863 Program of China (No. 2006AA10Z197, 2008AA101010), National Natural Science Foundation of China (No.30771544), National Key Technology R & D Program (No. 2006BAD 01A 10-5), Keystone Project of transfergene in China (2009ZX08009-157B, 2008ZX08007-002), “13115” Sci-Tech Innovation Program of Shaanxi Province (2008ZDKG-11), Program of National Beef Cattle Industrial Technology System.


  1. 1.
    Corton JM, Gillespie JG, Hardie DG (1994) Role of the AMP-activated protein kinase in the cellular stress response. Curr Biol 4(4):315–324CrossRefPubMedGoogle Scholar
  2. 2.
    Hardie DG, Carling D, Carlson M (1998) The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 67:821–855CrossRefPubMedGoogle Scholar
  3. 3.
    Kahn BB, Alquier T, Carling D, Hardie DG (2005) AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab 1(1):15–25CrossRefPubMedGoogle Scholar
  4. 4.
    Andersson U, Filipsson K, Abbott CR, Woods A, Smith K, Bloom SR, Carling D, Small CJ (2004) AMP-activated protein kinase plays a role in the control of food intake. J Biol Chem 279(13):12005–12008CrossRefPubMedGoogle Scholar
  5. 5.
    Kim MS, Park JY, Namkoong C et al (2004) Anti-obesity effects of alpha-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase. Nat Med 10(7):727–733CrossRefPubMedGoogle Scholar
  6. 6.
    Minokoshi Y, Kahn BB (2003) Role of AMP-activated protein kinase in leptin-induced fatty acid oxidation in muscle. Biochem Soc Trans 31(Pt 1):196–201PubMedGoogle Scholar
  7. 7.
    Han SM, Namkoong C, Jang PG et al (2005) Hypothalamic AMP-activated protein kinase mediates counter-regulatory responses to hypoglycaemia in rats. Diabetologia 48(10):2170–2178CrossRefPubMedGoogle Scholar
  8. 8.
    Kola B, Hubina E, Tucci SA et al (2005) Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase. J Biol Chem 280(26):25196–25201CrossRefPubMedGoogle Scholar
  9. 9.
    Mitchelhill KI, Stapleton D, Gao G, House C, Michell B, Katsis F, Witters LA, Kemp BE (1994) Mammalian AMP-activated protein kinase shares structural and functional homology with the catalytic domain of yeast Snf1 protein kinase. J Biol Chem 269(4):2361–2364PubMedGoogle Scholar
  10. 10.
    Stapleton D, Mitchelhill KI, Gao G et al (1996) Mammalian AMP-activated protein kinase subfamily. J Biol Chem 271(2):611–614CrossRefPubMedGoogle Scholar
  11. 11.
    Stapleton D, Woollatt E, Mitchelhill KI et al (1997) AMP-activated protein kinase isoenzyme family: subunit structure and chromosomal location. FEBS Lett 409(3):452–456CrossRefPubMedGoogle Scholar
  12. 12.
    Cheung PC, Salt IP, Davies SP, Hardie DG, Carling D (2000) Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding. Biochem J 346(Pt 3):659–669CrossRefPubMedGoogle Scholar
  13. 13.
    Thornton C, Snowden MA, Carling D (1998) Identification of a novel AMP-activated protein kinase beta subunit isoform that is highly expressed in skeletal muscle. J Biol Chem 273(20):12443–12450CrossRefPubMedGoogle Scholar
  14. 14.
    Crute BE, Seefeld K, Gamble J, Kemp BE, Witters LA (1998) Functional domains of the alpha1 catalytic subunit of the AMP-activated protein kinase. J Biol Chem 273(52):35347–35354CrossRefPubMedGoogle Scholar
  15. 15.
    Kemp BE, Stapleton D, Campbell DJ et al (2003) AMP-activated protein kinase, super metabolic regulator. Biochem Soc Trans 31(Pt 1):162–168PubMedGoogle Scholar
  16. 16.
    Hudson ER, Pan DA, James J, Lucocq JM, Hawley SA, Green KA, Baba O, Terashima T, Hardie DG (2003) A novel domain in AMP-activated protein kinase causes glycogen storage bodies similar to those seen in hereditary cardiac arrhythmias. Curr Biol 13(10):861–866CrossRefPubMedGoogle Scholar
  17. 17.
    Polekhina G, Gupta A, Michell BJ et al (2003) AMPK beta subunit targets metabolic stress sensing to glycogen. Curr Biol 13(10):867–871CrossRefPubMedGoogle Scholar
  18. 18.
    Bateman A (1997) The structure of a domain common to archaebacteria and the homocystinuria disease protein. Trends Biochem Sci 22(1):12–13CrossRefPubMedGoogle Scholar
  19. 19.
    Adams J, Chen ZP, Van Denderen BJ, Morton CJ, Parker MW, Witters LA, Stapleton D, Kemp BE (2004) Intrasteric control of AMPK via the gamma1 subunit AMP allosteric regulatory site. Protein Sci 13(1):155–165CrossRefPubMedGoogle Scholar
  20. 20.
    Scott JW, Norman DG, Hawley SA, Kontogiannis L, Hardie DG (2002) Protein kinase substrate recognition studied using the recombinant catalytic domain of AMP-activated protein kinase and a model substrate. J Mol Biol 317(2):309–323CrossRefPubMedGoogle Scholar
  21. 21.
    Iseli TJ, Oakhill JS, Bailey MF et al (2008) AMP-activated protein kinase subunit interactions: beta1:gamma1 association requires beta1 Thr-263 and Tyr-267. J Biol Chem 283(8):4799–4807CrossRefPubMedGoogle Scholar
  22. 22.
    Mahtani MM, Widen E, Lehto M et al (1996) Mapping of a gene for type 2 diabetes associated with an insulin secretion defect by a genome scan in Finnish families. Nat Genet 14(1):90–94CrossRefPubMedGoogle Scholar
  23. 23.
    Shaw JT, Lovelock PK, Kesting JB, Cardinal J, Duffy D, Wainwright B, Cameron DP (1998) Novel susceptibility gene for late-onset NIDDM is localized to human chromosome 12q. Diabetes 47(11):1793–1796CrossRefPubMedGoogle Scholar
  24. 24.
    Bowden DW, Sale M, Howard TD, Qadri A, Spray BJ, Rothschild CB, Akots G, Rich SS, Freedman BI (1997) Linkage of genetic markers on human chromosomes 20 and 12 to NIDDM in Caucasian sib pairs with a history of diabetic nephropathy. Diabetes 46(5):882–886CrossRefPubMedGoogle Scholar
  25. 25.
    Warden SM, Richardson C, O’Donnell J Jr, Stapleton D, Kemp BE, Witters LA (2001) Post-translational modifications of the beta-1 subunit of AMP-activated protein kinase affect enzyme activity and cellular localization. Biochem J 354(Pt 2):275–283CrossRefPubMedGoogle Scholar
  26. 26.
    Sakoda H, Fujishiro M, Fujio J et al (2005) Glycogen debranching enzyme association with beta-subunit regulates AMP-activated protein kinase activity. Am J Physiol Endocrinol Metab 289(3):E474–E481CrossRefPubMedGoogle Scholar
  27. 27.
    McKay SD, White SN, Kata SR, Loan R, Womack JE (2003) The bovine 5′ AMPK gene family: mapping and single nucleotide polymorphism detection. Mamm Genome 14(12):853–858CrossRefPubMedGoogle Scholar
  28. 28.
    Sambrook JG, Bashirova A, Andersen H, Piatak M, Vernikos GS, Coggill P, Lifson JD, Carrington M, Beck S (2006) Identification of the ancestral killer immunoglobulin-like receptor gene in primates. BMC Genomics 7:209CrossRefPubMedGoogle Scholar
  29. 29.
    Zhang C, Wang Y, Chen H, Lan X, Lei C (2007) Enhance the efficiency of single-strand conformation polymorphism analysis by short polyacrylamide gel and modified silver staining. Anal Biochem 365(2):286–287CrossRefPubMedGoogle Scholar
  30. 30.
    Wingender E, Dietze P, Karas H, Knuppel R (1996) TRANSFAC: a database on transcription factors and their DNA binding sites. Nucleic Acids Res 24(1):238–241CrossRefPubMedGoogle Scholar
  31. 31.
    Evans MJ, Scarpulla RC (1990) NRF-1: a trans-activator of nuclear-encoded respiratory genes in animal cells. Genes Dev 4(6):1023–1034CrossRefPubMedGoogle Scholar
  32. 32.
    Scarpulla RC (2002) Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene 286(1):81–89CrossRefPubMedGoogle Scholar
  33. 33.
    Baar K, Song Z, Semenkovich CF, Jones TE, Han DH, Nolte LA, Ojuka EO, Chen M, Holloszy JO (2003) Skeletal muscle overexpression of nuclear respiratory factor 1 increases glucose transport capacity. FASEB J 17(12):1666–1673CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Qin Zhang
    • 1
    • 3
  • Hong Chen
    • 1
    • 2
  • Sheng Zhao
    • 1
    • 3
  • Li Zhang
    • 1
  • Liangzhi Zhang
    • 1
  • Xueming Wang
    • 3
  1. 1.Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Sciences and TechnologyNorthwest A&F UniversityYanglingPeople’s Republic of China
  2. 2.Institute of Cellular and Molecular BiologyXuzhou Normal UniversityXuzhouPeople’s Republic of China
  3. 3.Jingchu University of TechnologyJingmenPeople’s Republic of China

Personalised recommendations