Molecular Biology Reports

, Volume 37, Issue 4, pp 1781–1786 | Cite as

Expression and characterization of Momordica Chanrantia anti-hyperglycaemic peptide in Escherichia coli

  • Si-Xiu Liu
  • Zhong-Ping Fu
  • Rui-Min Mu
  • Zhi-Bi Hu
  • Fu-Jun Wang
  • Xiang-Rong Wang


A nucleic acid sequence MC, encoding Momordica Chanrantia anti-hyperglycaemic peptide MC6 (accession: AAX06814) synthesized according to Escherichia coli preferred codons, was cloned and expressed in E. coli. Recombinant protein pQE8-MC (about 3.5 kDa) was purified and analyzed by 20% SDS–PAGE and western blot. It revealed that the expressed pQE8-MC had good solubility in aqueous media. An HPLC assay was used to confirm the expression of pQE8-MC. Subsequent pharmacological activity assay revealed a significant hypoglycemic effect of low dose treatments of pQE8-MC on male kunming mice. Four hours after an intravenous tail injection, the blood sugar levels of mice treated with pQE8-MC saline solution A3 (1 mg/kg BW) decreased greatly (P < 0.01) relative to the levels of a control group. This suggests that pQE8-MC, expressed in bioengineered E. coli, has a similar hypoglycemic function to the natural protein MC6 from M. Chanrantia. These results reveal the possibility of using bio-engineered bacteria as an anti-diabetic agent.


Momordica Chanrantia Anti-hyperglycaemic peptide pQE8-MC Pharmacological activity 



We acknowledge associate professor Fujun wang (Institute traditional Chinese Medicine, shanghai university of traditional Chinese medicine), and associate professor Juan Lin (State Key Laboratory of Genetic Engineering, Fudan University) for providing pMD18-MC, pQE8 and M15, respectively. This work was supported by a grant (no. 04DZ19818) from Shanghai Municipal Commission of Science and Technology Department.


  1. 1.
    Lucy D, Anoja SA, Chun SY (2002) Alternative therapies for type 2 diabetes. Altern Med Rev 7:45–58Google Scholar
  2. 2.
    Alan RS (2001) New perspectives into the molecular pathogenesis and treatment of type 2 diabetes. Cell 104:517–529. doi: 10.1016/S0092-8674(01)00239-2 CrossRefGoogle Scholar
  3. 3.
    Harris MI, Flegel KM, Cowie CC, Eberhart MS, Goldstein DE, Little RR, Wiedmeyer HM, Byrd-Holt DD (1998) Prevalence of diabetes, impaired fasting glucose, and impaired glucosetolerance in US adults. Diabetes Care 21:518–524. doi: 10.2337/diacare.21.4.518 CrossRefPubMedGoogle Scholar
  4. 4.
    Kathy A, Eric Y (2005) Using bitter melon to treat diabetes. Altern Complement Ther 11:179–184. doi: 10.1089/act CrossRefGoogle Scholar
  5. 5.
    Zhou J, Zhang Z, Lei XB (2005) Research of type 1 diabetes review. J Handan Med Coll 18:356–358Google Scholar
  6. 6.
    Rang HP, Dale MM (1991) The endocrine system pharmacology, 2nd edn. Longman Group, UK, pp 504–508Google Scholar
  7. 7.
    Davidson MB (1991) Diabetes mellitus: diagnosis and treatment, 3rd edn. Churchill Livingstone, New York, NYGoogle Scholar
  8. 8.
    UK Prospective diabetes study (UKPDS) Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352:837–853. doi: 10.1016/S0140-6736(98)07019-6 CrossRefGoogle Scholar
  9. 9.
    United Kingdom Prospective Diabetes Study Group (1998) United Kingdom prospective diabetes study 24: a 6-year, randomized, controlled trial comparing sulfonylurea, insulin, and metformin therapy in patients with newly diagnosed type 2 diabetes that could not be controlled with diet therapy. Ann Intern Med 128:165–175Google Scholar
  10. 10.
    UK Prospective Diabetes Study (UKPDS) Group (1998) Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 352:854–865. doi: 10.1016/S0140-6736(98)07037-8 CrossRefGoogle Scholar
  11. 11.
    Sinha A, Formica C, Tsalamandris C, Panagiotopoulos S, Hendrich E, DeLuise M, Seeman E, Jerums G (1996) Effect of insulin on body composition in patients with insulin-dependent and non-insulin-dependent diabetes. Diabet Med 13:40–46. doi: 10.1002/(SICI)1096-9136(199601)13:1<40::AID-DIA991>3.0.CO;2-U CrossRefPubMedGoogle Scholar
  12. 12.
    Grover JK, Yadav S, Vats V (2002) Medicinal plants of India with anti-diabetic potential. J Ethnopharmacol 81:81–100. doi: 10.1016/S0378-8741(02)00059-4 CrossRefPubMedGoogle Scholar
  13. 13.
    Pratibha VN, Laurel P, Jimmy TE, Khosrow A, Andre GT, Vivek RN (2005) Microsomal triglyceride transfer protein gene expression and ApoB secretion Are inhibited by bitter melon in HepG2 cells. J Nutr 135:702–706Google Scholar
  14. 14.
    Sharma VN, Sogani RK, Arora RB (1960) Some observations on hypoglycemic activity of Momordica charantia. Indian J Med Res 48:471–477Google Scholar
  15. 15.
    Gupta SS, Seth CB (1962) Effect of Momordica charantia Linn. (Karela) on glucose tolerance in albino rats. J Indian Med Assoc 39:581–584PubMedGoogle Scholar
  16. 16.
    Jose MP, Cheeran JV, Nair KPD (1976) Effect of selected indigenous drug on the blood sugar level in dogs. Indian J Pharmacol 8:86Google Scholar
  17. 17.
    Vimla DM, Venkateswarlu M, Krishana RRV (1977) Hypoglycemic activity of the leaves of Momordica charantia. Indian J Pharmacol 39:167–169Google Scholar
  18. 18.
    Kedar P, Chakrabarti CH (1982) Effects of bittergourd (Momordica charantia) seed and glibenclamide in streptozotocin-induced diabetes mellitus. Indian J Exp Biol 20:232–235PubMedGoogle Scholar
  19. 19.
    Ali L, Khan AK, Mamun MI, Mosihuzzaman M, Nahar N, Nur-e-Alam M, Rokeya B (1993) Studies on hypoglycemic effects of fruit pulp, seed and whole plant of Momordica charantia on normal and diabetic model rats. Planta Med 59:408–412. doi: 10.1055/s-2006-959720 CrossRefPubMedGoogle Scholar
  20. 20.
    Rathi SS, Grover JK, Vats V (2002) Anti-hyperglycemic effects of Momordica charantia and Mucuna pruriens in experimental diabetes and their effect on key metabolic enzymes involved in carbohydrate metabolism. Phytother Res 16:236–243. doi: 10.1002/ptr.842 CrossRefPubMedGoogle Scholar
  21. 21.
    Grover JK, Yadav SP (2004) Pharmacological actions and potential uses of Momordica charantia: a review. J Ethnopharmacol 93:123–132. doi: 10.1016/j.jep.2004.03.035 CrossRefPubMedGoogle Scholar
  22. 22.
    Ahmad N, Hassan MR, Halder H, Bennoor KS (1999) Effect of Momordica charantia (Karolla) extracts on fasting and postprandial serum glucose levels in NIDDM patients. Bangladesh Med Res Counc Bull 25:11–13PubMedGoogle Scholar
  23. 23.
    Welihinda J, Karunanayake EH, Sheriff MH, Jayasinghe KS (1986) Effect of Momordica charantia on the glucose tolerance in maturity onset diabetes. J Ethnopharmacol 17:277–282. doi: 10.1016/0378-8741(86)90116-9 CrossRefPubMedGoogle Scholar
  24. 24.
    Basch WE, Gabardi S, Ulbricht C (2003) Bitter melon (Momordica charantia): a review of efficacy and safety. Am J Health Syst Pharm 60:356–359PubMedGoogle Scholar
  25. 25.
    Chen Q, Chan L, Edmund T (2003) Bitter melon (Momordica charantia) reduces adiposity, lowers serum insulin [sic] and normalizes glucose tolerancein rats fed a high diet. Am Soc Nutr Sci 133:1088–1093Google Scholar
  26. 26.
    Platel K, Shurpalekar KS, Srinivasan K (1993) Influence of bitter gourd (Momordica charantia) on growth and blood constituents inalbino rats. Nahrung 37:156–160. doi: 10.1002/food.19930370210 CrossRefPubMedGoogle Scholar
  27. 27.
    Virdi J, Sivakami S, Shahani S, Suthar AC, Banavalikar MM, Biyani MK (2003) Antihyperglycemic effects of three extracts from Momordica charantia. J Ethnopharmacol 88:107–111. doi: 10.1016/S0378-8741(03)00184-3 CrossRefPubMedGoogle Scholar
  28. 28.
    Baldwa VS, Bhandari CM, Pangaria A, Goyal RK (1977) Clinical trial inpatients with diabetes mellitus of an insulin-like compound obtained from plant source. Uppsala J Med Sci 82:39–41CrossRefGoogle Scholar
  29. 29.
    Khanna P, Jain SC, Panagariya A, Dixit VP (1981) Hypoglycemic activity of polypeptide-P from a plant source. J Nat Prod 44:648–655. doi: 10.1021/np50018a002 CrossRefPubMedGoogle Scholar
  30. 30.
    Khanna P, Nag TN, Jain SC, Mohan S (1974) Extraction of insulin from a plant source. In: 3rd International Congress on plant tissue and cell cultures, pp. 21–26Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Si-Xiu Liu
    • 1
    • 2
  • Zhong-Ping Fu
    • 2
  • Rui-Min Mu
    • 1
  • Zhi-Bi Hu
    • 2
  • Fu-Jun Wang
    • 2
  • Xiang-Rong Wang
    • 1
  1. 1.Department of Environmental Science & Engineering, Urban Eco-Planning & Design Researching CenterFudan UniversityShanghaiPeople’s Republic of China
  2. 2.Institute of Traditional Chinese MedicineShanghai University of Traditional Chinese MedicineShanghaiChina

Personalised recommendations