Molecular Biology Reports

, Volume 37, Issue 1, pp 429–434 | Cite as

A novel polymorphism of GDF5 gene and its association with body measurement traits in Bos taurus and Bos indicus breeds

  • Yong Feng Liu
  • Lin Sen Zan
  • Kui Li
  • Shuan Ping Zhao
  • Ya Ping Xin
  • Qing Lin
  • Wan Qiang Tian
  • Zhi Wei Wang


Body measurement traits, influenced by genes and environmental factors, play numerous important roles in the value assessment of productivity and economy. Growth differentiate factor 5 (GDF5), involved in the development and maintenance of bone and cartilage, is an important candidate gene for body measurement traits selection through marker-assisted selection (MAS). In this study, based on the PCR-RFLP technology, we discovered and evaluated the potential association of the single nucleotide polymorphism (SNP) (T586C in exon 1) of the bovine GDF5 gene with body measurement traits in 985 Bos taurus breed, 42 Bos indicus breed and 76 Bos indicus × Bos taurus individuals. As the SNP marker, there were the significant effects on the Body length (BL) in the Bos taurus (BT) and Bos indicus × Bos taurus (BMY) populations (P < 0.05). In BT population, animals with the genotype TT had lower mean values for BL and Hip width (HW) than these with the TC and CC genotype (P < 0.01). In BMY population, animals with the genotype TC had lower mean values for BL than these with the genotype CC (P < 0.05). These results suggest that the SNP of the GDF5 gene could be a very useful genetic marker for body measurement traits in the bovine reproduction and breeding.


Cattle GDF5 gene SNP polymorphism PCR-RFLP Body measurement 



This work was supported by the China National “863” Program (2006AA10Z1A1), the National Eleventh “Five-Year” Science and Technology Support Project (2006BAD01A10-3), the “13115” Scientific and Technological Innovation Program of Shaanxi Province (2007ZDCY-01), National 973 Program (2006CB102105) and Talent Foundation for Northwest A&F University. Moreover, the bovine populations were supported by Qinchuan beef cattle breeding center of Shaanxi province, Nanyang, Jiaxian and Xianan cattle breeding center of Henan province, Luxi cattle breeding center of Shandong province and Yunnan beef cattle & pasture research center (P. R. China).


  1. 1.
    Miyamoto Y, Mabuchil A, Shi DQ, Kubo T, Takatori Y, Saito S, Fujioka M, Sudo A, Uchida A, Yamamoto S, Ozaki K, Takigawa M, Tanaka T, Nakamura Y, Jiang Q, Ikegawa S (2007) A functional polymorphism in the 5′ UTR of GDF5 is associated with susceptibility to osteoarthritis. Nat Genet 39:529–533. doi: 10.1038/2005 CrossRefPubMedGoogle Scholar
  2. 2.
    Luyten FP (1997) Cartilage-derived morphogenetic protein-1. Int J Biochem Cell Biol 29:1241–1244. doi: 10.1016/S1357-2725(97)00025-3 CrossRefPubMedGoogle Scholar
  3. 3.
    Francis-West PH, Abdelfattah A, Chen P, Allen C, Parish J, Ladher R, Allen S, MacPherson S, Luyten FP, Archer CW (1999) Mechanisms of GDF-5 action during skeletal development. Development 126:1305–1315PubMedGoogle Scholar
  4. 4.
    Edwards CJ, Frances-West PH (2001) Bone morphogenetic proteins in the development and healing of synovial joints. Semin Arthritis Rheum 31:33–42. doi: 10.1053/sarh.2001.24875 CrossRefPubMedGoogle Scholar
  5. 5.
    Mikic B (2004) Multiple effects of GDF5 deficiency on skeletal tissues, implications for therapeutic bioengineering. Ann Biomed Eng 32:466–476. doi: 10.1023/B:ABME.0000017549.57126.51 CrossRefPubMedGoogle Scholar
  6. 6.
    Nickel J, Kotzsch A, Sebald W, Mueller TD (2005) A single residue of GDF5 defines binding specificity to BMP receptor IB. J Mol Biol 349:933–947. doi: 10.1016/j.jmb.2005.04.015 CrossRefPubMedGoogle Scholar
  7. 7.
    Storm EE, Kingsley DM (1996) Joint patterning defects caused by single and double mutations in members of the bone morphogenetic protein (BMP) family. Development 122:3969–3979PubMedGoogle Scholar
  8. 8.
    Thomas JT, Lin K, Nandedkar M, Camargo M, Cervenka J, Luyten FP (1996) A human chondrodysplasia due to a mutation in a TGF-beta superfamily member. Nat Genet 12:315–317. doi: 10.1038/ng0396-315 CrossRefPubMedGoogle Scholar
  9. 9.
    Harada M, Takahara M, Zhe P, Otsuji M, Iuchi Y, Takagi M, Ogino T (2007) Developmental failure of the intra-articular ligaments in mice with absence of growth differentiation factor 5. Osteoarthritis Cartilage 15:468–474. doi: 10.1016/j.joca.2006.09.003 CrossRefPubMedGoogle Scholar
  10. 10.
    Masuya H, Nishida K, Furuichi T, Toki H, Nishimura G, Kawabata H, Yokoyama H, Yoshida A, Tominaga S, Nagano J (2007) A novel dominant-negative mutation in Gdf5 generated by ENU mutagenesis impairs joint formation and causes osteoarthritis in mice. Hum Mol Genet 16:2366–2375. doi: 10.1093/hmg/ddm195 CrossRefPubMedGoogle Scholar
  11. 11.
    Merinoa R, Maciasb D, Gañanb Y, Economidesc AN, Wangc X, Wuc Q, Stahlc N, Sampathd KT, Varonaa P, Hurlea JM (1999) Expression and function of Gdf-5 during digit skeletogenesis in the embryonic chick leg bud. Dev Biol 206:33–45. doi: 10.1006/dbio.1998.9129 CrossRefGoogle Scholar
  12. 12.
    Kellgren JH, Moore R (1952) Generalized osteoarthritis and Heberden’s nodes. BMJ 1:181–187. doi: 10.1136/bmj.1.4751.181 CrossRefPubMedGoogle Scholar
  13. 13.
    Oliveria SA, Felson DT, Reed JI, Cirillo PA, Walker AM (1995) Incidence of symptomatic hand, hip, and knee osteoarthritis among patients in a health maintenance organization. Arthritis Rheum 38:1134–1141. doi: 10.1002/art.1780380817 CrossRefPubMedGoogle Scholar
  14. 14.
    Erlacher L, McCartney J, Piek E, ten Dijke P, Yanagishita M, Oppermann H, Luyten FP (1998) Cartilage-derived morphogenetic proteins and osteogenic protein-1 differentially regulate osteogenesis. J Bone Miner Res 13:383–392. doi: 10.1359/jbmr.1998.13.3.383 CrossRefPubMedGoogle Scholar
  15. 15.
    Wolfman NM, Hattersley G, Cox K, Celeste AJ, Nelson R, Yamaji N, Dube JL, DiBlasio-Smith E, Nove J, Song JJ, Wozney JM, Rosen V (1997) Ectopic induction of tendon and ligament in rats by growth and differentiation factors 5, 6, and 7, members of the TGF-b gene family. J Clin Invest 100:321–330. doi: 10.1172/JCI119537 CrossRefPubMedGoogle Scholar
  16. 16.
    Gilbert RP, Bailey DRC, Shannon NH (1993) Linear body measurements of cattle before and after 20 years of selection for postweaning gain when fed two different diets. J Anim Sci 71:1712–1720PubMedGoogle Scholar
  17. 17.
    Mullenbach R, Lagoda PJ, Welter C (1989) An efficient salt-chloroform extraction of DNA from blood and tissues. Trends Genet 5:391PubMedGoogle Scholar
  18. 18.
    Nei M, Roychoudhury AK (1974) Sampling variance of heterozygosity and genetic distance. Genetics 76:379–390PubMedGoogle Scholar
  19. 19.
    Nei M, Li WH (1979) Mathematic model for studying genetic variation in terms of restriction endonuclease. Proc Natl Acad Sci USA 76:5269–5273. doi: 10.1073/pnas.76.10.5269 CrossRefPubMedGoogle Scholar
  20. 20.
    Weedon MN, Lango H, Lindgren CM, Wallace C, Evans DM, Mangino M, Freathy RM, Perry JRB, Stevens S, Hall AS, Samani NJ, Shields B, Prokopenko I, Farrall M, Dominiczak A, Johnson T, Bergmann S, Beckmann JS, Vollenweider P, Waterworth DM, Mooser V, Palmer CNA, Morris AD, Ouwehand WH, Caulfield M, Munroe PB, Hattersley AT, McCarthy MI, Frayling TM (2008) Genome-wide association analysis identifies 20 loci that influence adult height. Nat Genet 40:575–583. doi: 10.1038/ng.121 CrossRefPubMedGoogle Scholar
  21. 21.
    Sanna S, Jackson AU, Nagaraja R, Willer CJ, Chen WM, Bonnycastle LL, Shen HQ, Timpson N, Lettre G, Usala G, Chines PS, Stringham HM, Scott LJ, Dei M, Lai S, Albai G, Crisponi L, Naitza S, Doheny KF, Pugh EW, Shlomo YB, Ebrahim S, Lawlor DA, Bergman RN, Watanabe RM, Uda M, Tuomilehto J, Coresh J, Hirschhorn JN, Shuldiner AR, Schlessinger D, Collins FS, Smith GD, Boerwinkle E, Cao A, Boehnke M, Abecasis GR, Mohlke KL (2008) Common variants in the GDF5-UQCC region are associated with variation in human height. Nat Genet 40:198–203. doi: 10.1038/ng.74 CrossRefPubMedGoogle Scholar
  22. 22.
    Lettre GA, Jackson AU, Gieger C, Schumacher FR, Berndt SI, Sanna S, Eyheramendy S, Voight BF, Butler JL, Guiducci C, Illig T, Hackett R, Heid IM, Jacobs KB, Lyssenko V, Uda M, Boehnke M, Chanock SJ, Groop LC, Hu FB, Isomaa B, Kraft P, Peltonen L, Salomaa V, Schlessinger D, Hunter DJ, Hayes RB, Abecasis GR, Wichmann HE, Mohlke KL, Hirschhorn JN (2008) Identification of ten loci associated with height highlights new biological pathways in human growth. Nat Genet 40:584–591. doi: 10.1038/ng.125 CrossRefPubMedGoogle Scholar
  23. 23.
    Southam L, Rodriguez-lopez J, Wilkins JM, Pombo-suarez M, Snelling S, Gomez-reino JJ, Charpman K, Gonzalez A, Loughlin J (2007) An SNP in the 5¢-UTR of GDF5 is associated with osteoarthritis susceptibility in Europeans and with in vivo differences in allelic expression in articular cartilage. Hum Mol Genet 16:2226–2232. doi: 10.1093/hmg/ddm174 CrossRefPubMedGoogle Scholar
  24. 24.
    Chang SC, Hoang B, Thomas JT, Vukicevic S, Luyten FP, Ryba NJ, Kozak CA, Reddi AH, Moos M (1994) Cartilage-derived morphogenetic proteins. New members of the transforming growth factor-b superfamily predominantly expressed in long bones during human embryonic development. J Biol Chem 269:28227–28234PubMedGoogle Scholar
  25. 25.
    Chujo T, Anhoward S, Akeda K, Miyamoto K, Muehleman C, Attawia M, Andersson G, Masuda K (2006) Effects of growth differentiation factor-5 on the intervertebral disc—in vitro bovine study and in vivo rabbit disc degeneration model study. Spine 31:2909–2917. doi: 10.1097/01.brs.0000248428.22823.86 CrossRefPubMedGoogle Scholar
  26. 26.
    Voight BF, Kudaravalli S, Wen X, Pritchard JK (2006) A map of recent positive selection in the human genome. PLoS Biol 4:1–12. doi: 10.1371/journal.pbio.0040001 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Yong Feng Liu
    • 1
  • Lin Sen Zan
    • 1
    • 3
  • Kui Li
    • 2
  • Shuan Ping Zhao
    • 1
  • Ya Ping Xin
    • 1
  • Qing Lin
    • 1
  • Wan Qiang Tian
    • 1
  • Zhi Wei Wang
    • 2
  1. 1.College of Animal Science and TechnologyNorthwest A & F UniversityYanglingPeople’s Republic of China
  2. 2.Key Laboratory for Farm Animal Genetic Resources and Utilization of Ministry of Agriculture of China, Institute of Animal ScienceChinese Academy of Agricultural SciencesBeijingPeople’s Republic of China
  3. 3.National Beef Cattle Improvement Centre of ChinaYanglingPeople’s Republic of China

Personalised recommendations