Molecular Biology Reports

, Volume 37, Issue 3, pp 1541–1549 | Cite as

Studies on the interaction between benzidine and bovine serum albumin by spectroscopic methods

  • Ye-Zhong Zhang
  • Jie Dai
  • Xia Xiang
  • Wei-Wei Li
  • Yi Liu


The interaction between bovine serum albumin (BSA) and benzidine (BD) in aqueous solution was investigated by fluorescence spectroscopy, circular dichroism (CD) spectra and UV–Vis spectroscopy, as well as resonance light scattering spectroscopy (RLS). It was proved from fluorescence spectra that the fluorescence quenching of BSA by BD was a result of the formation of BD–BSA complex, and the binding constants (K a) were determined according to the modified Stern–Volmer equation. The enthalpy change (ΔH) and entropy change (ΔS) were calculated to be −34.11 kJ mol−1 and −25.89 J mol−1 K−1, respectively, which implied that van der Waals force and hydrogen bond played predominant roles in the binding process. The addition of increasing BD to BSA solution caused the gradual enhancement in RLS intensity, exhibiting the forming of the aggregate. Moreover, the competitive experiments of site markers suggested that the binding site of BD to BSA was located in the region of subdomain IIA (sudlow site I). The distance (r) between the donor (BSA) and the acceptor (BD) was 4.44 nm based on the Förster theory of non–radioactive energy transfer. The results of synchronous fluorescence and CD spectra demonstrated the microenvironment and the secondary conformation of BSA were changed.


Benzidine Bovine serum albumin Fluorescence quenching Binding site Circular dichroism spectra 



We gratefully acknowledge the financial support of Chinese 863 Program (2007AA06Z407); National Natural Science Foundation of China (Grant Nos. 30570015, 20621502); Natural Science Foundation of Hubei Province (2005ABC002); and the Research Foundation of Chinese Ministry of Education ([2006]8-IRT0543).


  1. 1.
    Flarakos J, Morand KL, Vouros P (2005) High-throughput solution-based medicinal library screening against human serum albumin. Anal Chem 77:1345–1353. doi: 10.1021/ac048685z CrossRefPubMedGoogle Scholar
  2. 2.
    Carer DC, Ho JX (1994) The structure of serum albumin. Adv Protein Chem 45:153–203. doi: 10.1016/S0065-3233(08)60640-3 CrossRefGoogle Scholar
  3. 3.
    Li Y, Yao XY, Jin J, Chen XG, Hu ZD (2007) Interaction of rhein with human serum albumin investigation by optical spectroscopic technique and modeling studies. BBA-Proteins Proteomic 1774:51–58. doi: 10.1016/j.bbapap.2006.09.020 CrossRefGoogle Scholar
  4. 4.
    Dockal M, Cater DC, Ruker F (2000) Conformational transitions of the three recombinant domains of human serum albumin depending on pH. J Biol Chem 275:3042–3050. doi: 10.1074/jbc.275.5.3042 CrossRefPubMedGoogle Scholar
  5. 5.
    Olson RE, Christ DD (1996) Plasma protein binding of drugs. Annu Rep Med Chem 31:327–336. doi: 10.1016/S0065-7743(08)60472-8 CrossRefGoogle Scholar
  6. 6.
    Wang YQ, Zhang HM, Zhang GC, Zhou QH, Fei ZH, Liu ZT, Li ZX (2008) Fluorescence spectroscopic investigation of the interaction between benzidine and bovine hemoglobin. J Mol Struct 886:77–84. doi: 10.1016/j.molstruc.2007.10.039 CrossRefGoogle Scholar
  7. 7.
    Kumar K, Devi SS, Krishnamurthi K, Gampawar S, Mishra N, Pandya GH, Chakrabarti T (2006) Decolorisation, biodegradation and detoxification of benzidine based azo dye. Bioresour Technol 97:407–413. doi: 10.1016/j.biortech.2005.03.031 CrossRefPubMedGoogle Scholar
  8. 8.
    Choudhary G (1996) Human health perspectives on environmental exposure to benzidine: a review. Chemosphere 32:267–291. doi: 10.1016/0045-6535(95)00338-X CrossRefPubMedGoogle Scholar
  9. 9.
    Golka K, Kopps S, Myslak ZW (2004) Carcinogenicity of azo colorants: influence of solubility and bioavailability. Toxicol Lett 151:203–210. doi: 10.1016/j.toxlet.2003.11.016 CrossRefPubMedGoogle Scholar
  10. 10.
    Kimberling DN, Ferreira AR, Shuster SM, Keim P (1996) RAPD marker estimation of genetic structure among isolated northern leopard frog populations in the south-western USA. Mol Ecol 5:521–529. doi: 10.1111/j.1365-294X.1996.tb00344.x CrossRefPubMedGoogle Scholar
  11. 11.
    Amutha R, Subramanian V, Nair BU (2001) Interaction of benzidine with DNA: experimental and modeling studies. Chem Phys Lett 344:40–48. doi: 10.1016/S0009-2614(01)00751-5 CrossRefGoogle Scholar
  12. 12.
    Zhang HX, Huang X, Zhang M (2008) Thermodynamic studies on the interaction of dioxopromethazine to β-cyclodextrin and bovine serum albumin. J Fluoresc 18:753–760. doi: 10.1007/s10895-008-0348-8 CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang HX, Gao S, Yang XX (2008) Synthesis of an octupolar compound and its biological effects on serum albumin. Mol Boil Rep doi:  10.1007/s11033-008-9329-x
  14. 14.
    Shi XY, Cao H, Ren FL, Xu M (2007) Spectroscopic analysis of the binding interaction between tinidazole and bovine serum albumin. Chem Biodivers 4:2780–2790CrossRefPubMedGoogle Scholar
  15. 15.
    Yue YY, Zhang YH, Li Y, Zhu JH, Qin J, Chen XG (2008) Interaction of nobiletin with human serum albumin studied using optical spectroscopy and molecular modeling methods. J Lumin 128:513–520. doi: 10.1016/j.jlumin.2007.09.029 CrossRefGoogle Scholar
  16. 16.
    Khan AM, Muzammil S, Musarrat J (2002) Differential binding of tetracyclines with serum albumin and induced structural alterations in drug-bound protein. Int J Biol Macromol 30:243–249. doi: 10.1016/S0141-8130(02)00038-7 CrossRefPubMedGoogle Scholar
  17. 17.
    Sreerama N, Woody RW (1993) A self-consistent method for the analysis of protein secondary structure from circular dichroism. Anal Biochem 209:32–44. doi: 10.1006/abio.1993.1079 CrossRefPubMedGoogle Scholar
  18. 18.
    Whitmore L, Wallace BA (2004) DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Res 32:W668–W673. doi: 10.1093/nar/gkh371 CrossRefPubMedGoogle Scholar
  19. 19.
    Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Plenum Press, New York, pp 237–265Google Scholar
  20. 20.
    Ashoka S, Seetharamappa J, Kandagal PB, Shaikh SMT (2006) Investigation of the interaction between trazodone hydrochloride and bovine serum albumin. J Lumin 121:179–186. doi: 10.1016/j.jlumin.2005.12.001 CrossRefGoogle Scholar
  21. 21.
    Chen J, Jiang XY, Chen XQ, Chen Y (2008) Effect of temperature on the metronidazole-BSA interaction: multi-spectroscopic method. J Mol Struct 876:121–126. doi: 10.1016/j.molstruc.2007.06.011 CrossRefGoogle Scholar
  22. 22.
    He WY, Li Y, Xue CX, Hu ZD, Chen XG, Sheng FL (2005) Effect of Chinese medicine alpinetin on the structure of human serum albumin. Bioorg Med Chem 13:1837–1845. doi: 10.1016/j.bmc.2004.11.038 CrossRefPubMedGoogle Scholar
  23. 23.
    Ware WR (1962) Oxygen quenching of fluorescence in solution: an experimental study of the diffusion process. J Phys Chem 66:455–458. doi: 10.1021/j100809a020 CrossRefGoogle Scholar
  24. 24.
    Zhou N, Liang YZ, Wang P (2007) 18 β-Glycyrrhetinic acid interaction with bovine serum albumin. J Photoch Photobio A 185:271–276. doi: 10.1016/j.jphotochem.2006.06.019 CrossRefGoogle Scholar
  25. 25.
    Hu YJ, Liu Y, Wang JB, Xiao XH, Qu SS (2004) Study of the interaction between monoammonium glycyrrhizinate and bovine serum albumin. J Pharm Biomed 36:915–919. doi: 10.1016/j.jpba.2004.08.021 CrossRefGoogle Scholar
  26. 26.
    Lehrer S (1971) Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry 10:3254–3263. doi: 10.1021/bi00793a015 CrossRefPubMedGoogle Scholar
  27. 27.
    Timaseff SN (1972) Proteins of biological fluids. Pergamon Press, Oxford, pp 511–519Google Scholar
  28. 28.
    Ross PD, Subramanian S (1981) Thermodynamic of protein association reaction: forces contributing to stability. Biochemistry 20:3096–3120. doi: 10.1021/bi00514a017 CrossRefPubMedGoogle Scholar
  29. 29.
    Liu JQ, Tian JN, Zhang JY, Hu ZD, Chen XG (2003) Interaction of magnolol with bovine serum albumin: a fluorescence-quenching study. Anal Bioanal Chem 376:864–867. doi: 10.1007/s00216-003-1964-4 CrossRefPubMedGoogle Scholar
  30. 30.
    Kang J, Liu Y, Xie MX, Li S, Jiang M, Wang YD (2004) Interaction of human serum albumin with chlorogenic acid and ferulic acid. BBA-Gene Subjects 1674:205–214. doi: 10.1016/j.bbagen.2004.06.021 CrossRefGoogle Scholar
  31. 31.
    Bai HY, Liu XQ, Zhang ZL, Dong SJ (2004) In situ circular dichroic electrochemical study of bilirubin and bovine serum albumin complex. Spectrochim Acta [A] 60:155–160. doi: 10.1016/S1386-1425(03)00188-4 CrossRefGoogle Scholar
  32. 32.
    Kosa T, Maruyama T, Otagiri M (1997) Species differences of serum albumin: I. drug binding sites. Pharm Res 14:1607–1612. doi: 10.1023/A:1012138604016 CrossRefPubMedGoogle Scholar
  33. 33.
    Sudlow G, Birkett DJ, Wade DN (1976) Further characterization of specific drug binding sites on human serum albumin. Mol Pharmacol 12:3210–3217Google Scholar
  34. 34.
    Zsila F, Bikadi Z, Simonyi M (2003) Probing the binding of the flavonoid, quercetin to human serum albumin by circular dichroism, electronic absorption spectroscopy and molecular modeling methods. Biochem Pharmacol 65:447–456. doi: 10.1016/S0006-2952(02)01521-6 CrossRefPubMedGoogle Scholar
  35. 35.
    Boulton DW, Walle UK, Walle T (1998) Extensive binding of the bioflavonoid quercetin to human plasma proteins. J Pharm Pharmacol 50:243–249PubMedGoogle Scholar
  36. 36.
    Forster T (1965) Delocalized excitation and excitation transfer. In: Sinanoglu O (ed) Modern quantum chemistry. Academic Press, New York, pp 93–137Google Scholar
  37. 37.
    Mahammed A, Weaver JJ, Gray HB, Sorasaenee K, Gross Z (2004) Amphiphilic corroles bind tightly to human serum albumin. Bioconjug Chem 15:738–746. doi: 10.1021/bc034179p CrossRefPubMedGoogle Scholar
  38. 38.
    Miller JN (1979) Recent advances in molecular luminescence analysis. Proc Anal Div Chem Soc 16:203–208Google Scholar
  39. 39.
    Kelly SM, Jess TJ, Price NC (2005) How to study proteins by circular dichoism. BBA-Proteins Proteom 1751:119–139. doi: 10.1016/j.bbapap.2005.06.005 CrossRefGoogle Scholar
  40. 40.
    Yang P, Gao F (2002) The principle of bioinorganic chemistry. Science Press, Beijing, pp 489–494Google Scholar
  41. 41.
    Cui FT, Fan J, Li PJ, Hu ZD (2004) Interactions between 1-benzoyl-4-p-chlorophenyl thiosemicarbazide and serum albumin: investigation by fluorescence spectroscopy. Bioorg Med Chem 12:151–157. doi: 10.1016/j.bmc.2003.10.018 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Ye-Zhong Zhang
    • 1
  • Jie Dai
    • 1
  • Xia Xiang
    • 1
    • 2
  • Wei-Wei Li
    • 1
  • Yi Liu
    • 1
    • 2
  1. 1.Department of Chemistry, College of Chemistry and Environmental EngineeringYangtze UniversityJingzhouPeople’s Republic of China
  2. 2.State Key Laboratory of Virology, College of Chemistry and Molecular SciencesWuhan UniversityWuhanPeople’s Republic of China

Personalised recommendations