Skip to main content
Log in

Cloning and characterization of the Rubisco activase gene from Ipomoea batatas (L.) Lam

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

A full-length cDNA of Rubisco activase (IBrcaI) was cloned from sweet potato (Ipomoea batatas (L.) Lam) using Rapid-Amplification of cDNA Ends (RACE). IBrcaI contains a 1,347 bp open reading frame encoding a protein of 439 amino acids. The sequence alignment of multiple Rubisco activase genes from sweet potato and other plants showed high homology at two previously described ATP-binding sites. Western blot analysis indicated that there are two Rubisco activase proteins in sweet potato. Expression of IBrcaI was only detected in leaves. In the 14 h light and 10 h dark photoperiods, maximal and minimal IBrcaI mRNA expression levels were detected at 8:00 in the morning and at midnight, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Portis AR Jr (2003) Rubisco activase-Rubsico;s catalytic chaperone. Photosynth Res 75:11–27. doi:10.1023/A:1022458108678

    Article  CAS  PubMed  Google Scholar 

  2. Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the a- and b-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951

    CAS  PubMed  Google Scholar 

  3. Werneke JM, Chatfield JM, Ogren WL (1989) Alternative mRNA splicing generates the two Ribulosebisphosphate Carboxylase/oxygenase activase polypeptides in spinach and Arabidopsis. Plant Cell 1:815–825

    Article  CAS  PubMed  Google Scholar 

  4. Werneke JM, Zielinski RE, Ogren WL (1988) Structure and expression of spinach leaf cDNA encoding ribulosebisphosphate carboxylase/oxygenase activase. Proc Natl Acad Sci USA 85:787–791. doi:10.1073/pnas.85.3.787

    Article  CAS  PubMed  Google Scholar 

  5. Rundle SJ, Zielinski RE (1991) Organization and expression of two tandemlyoriented genes encoding ribulosebisphosphate carboxylase/oxygenase activase in barley. J Biol Chem 266:4677–4685

    CAS  PubMed  Google Scholar 

  6. To KY, Suen DF, Chen SG (1999) Molecular characterization of ribulose-1,5-bisphosphate carboxylase/oxygenase activase in rice leaves. Planta 209:66–76. doi:10.1007/s004250050607

    Article  CAS  PubMed  Google Scholar 

  7. Salvucci ME, van de Loo FJ (2003) Two isoforms of Rubisco activase in cotton, the products of separate genes not alternative splicing. Planta 216:736–744

    CAS  PubMed  Google Scholar 

  8. Salvucci ME, Werneke JM, Ogren WL, Portis AR Jr (1987) Purification and species distribution of Rubisco activase. Plant Physiol 84:930–936. doi:10.1104/pp.84.3.930

    Article  CAS  PubMed  Google Scholar 

  9. Law RD, Crafts-Brandner SJ (2001) High temperature stress increases the expression of wheat leaf ribulose bisphosphate carboxylase/oxygenase activase protein. Arch Biochem Biophys 386(2):261–267. doi:10.1006/abbi.2000.2225

    Article  CAS  PubMed  Google Scholar 

  10. Crafts-Brandner SJ, Salvucci ME (2002) Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiol 129:1773–1780. doi:10.1104/pp.002170

    Article  CAS  PubMed  Google Scholar 

  11. Roesler KR, Ogren WL (1990) Primary structure of Chlamydomonas reinhardtii Ribulose-1,5-bisphosphate carboxylase/oxygenase activase and evidence for a single polypeptide. Plant Physiol 94:1837–1841. doi:10.1104/pp.94.4.1837

    Article  CAS  PubMed  Google Scholar 

  12. Ohara O, Dorit RL, Gilbert W (1983) One-side polymerase chain reaction: the amplification of cDNA. Proc Natl Acad Sci USA 86:5673–5677. doi:10.1073/pnas.86.15.5673

    Article  Google Scholar 

  13. Mahmoud SS, Wang SL, Moloney MM, Habibi HR (1998) Production of a biologically active novel goldfish growth hormone in Escherichia coli. Comp Biochem Physiol B 120:657–663. doi:10.1016/S0305-0491(98)10059-7

    Article  CAS  PubMed  Google Scholar 

  14. Robinson SP, Streusand VJ, Chatfield JM, Portis AR Jr (1988) Purification and assay of Rubisco activase from leaves. Plant Physiol 88:1008–1014. doi:10.1104/pp.88.4.1008

    Article  CAS  PubMed  Google Scholar 

  15. Li CS, Salvucci ME, Portis AR Jr (2005) Two residues of Rubisco activase involved in recognition of the Rubisco substrate. J Biochem 280:24864–24869

    CAS  Google Scholar 

  16. Li CS, Wang DF, Portis AR Jr (2006) Identification of critical arginine residues in the functioning of Rubisco activase. Arch Biochem Biophys 450:176–182. doi:10.1016/j.abb.2006.04.002

    Article  CAS  PubMed  Google Scholar 

  17. Wang DF, Portis AR Jr (2006) Two conserved tryptophan residues are responsible for intrinsic fluorescence enhancement in Rubsico activase upon ATP binding. Photosynth Res 88:185–193. doi:10.1007/s11120-006-9051-2

    Article  CAS  PubMed  Google Scholar 

  18. Zielinski RE, Werneke JM, Jenkins ME (1989) Coordinate expression of Rubisco activase and Rubisco during barley leaf cell development. Plant Physiol 90:516–521. doi:10.1104/pp.90.2.516

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yizheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, K., He, B., Zhou, S. et al. Cloning and characterization of the Rubisco activase gene from Ipomoea batatas (L.) Lam. Mol Biol Rep 37, 661–668 (2010). https://doi.org/10.1007/s11033-009-9510-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-009-9510-x

Keywords

Navigation