Advertisement

Molecular Biology Reports

, Volume 36, Issue 7, pp 1779–1791 | Cite as

Genetic variation and population structure of endemic yellow catfish, Horabagrus brachysoma (Bagridae) among three populations of Western Ghat region using RAPD and microsatellite markers

  • P. M. Abdul Muneer
  • A. Gopalakrishnan
  • K. K. Musammilu
  • Vindhya Mohindra
  • K. K. Lal
  • V. S. Basheer
  • W. S. Lakra
Article

Abstract

Random amplified polymorphic DNA (RAPD) and microsatellite markers were applied to evaluate the genetic variation in endemic and endangered yellow catfish, Horabagrus brachysoma sampled from three geographic locations of Western Ghat, South India river systems. In RAPD, of 32 10-mer RAPD primers screened initially, 10 were chosen and used in a comparative analysis of H. brachysoma collected from Meenachil, Chalakkudy and Nethravathi River systems. Of the 124 total RAPD fragments amplified, 49 (39.51%) were found to be shared by individuals of all 3 populations. The remaining 75 fragments were found to be polymorphic (60.48%). In microsatellites, six polymorphic microsatellite loci were identified by using primers developed for Pangasius hypophthalmus, Clarias macrocephalus and Clarias gariepinus. The identified loci were confirmed as microsatellite by sequencing after making a clone. The nucleotide sequences of 6 loci were published in NCBI genbank. The number of alleles across the six loci ranged from 4 to 7 and heterozygosities ranged from 0.07 to 0.93. The mean number of alleles and effective number of alleles per locus were 5.00 and 3.314, respectively. The average heterozygosity across all investigated samples was 0.72, indicating a significant deficiency of heterozygotes in this species. RAPD and microsatellite methods reported a high degree of gene diversity and genetic distances depicted by UPGMA dendrograms among the populations of H. brachysoma.

Keywords

Horabagrusbrachysoma RAPD Genetic variation Microsatellites PCR Polymorphism 

Notes

Acknowledgments

Indian Council of Agricultural Research-National Agricultural Technology Project (ICAR-NATP), which supported this study financially, is gratefully acknowledged. The authors are grateful to Dr. A. G. Ponniah and D. Kapoor (former Directors, NBFGR) and Dr. S. P. Singh (PI, NATP, NBFGR) for encouragement, support and guidance.

References

  1. 1.
    Gopalakrishnan A, Ponniah AG (2000) Cultivable, food, sport and ornamental fish species endemic to peninsular India with special reference to the Western Ghats. In: Ponniah AG, Gopalakrishnan A (eds) Endemic fish diversity of the Western Ghats. National Bureau of Fish Genetic Resources, Lucknow, pp 13–32Google Scholar
  2. 2.
    CAMP (1998) Conservation Assessment and Management Plan (CAMP) for freshwater fishes of India 1997. Zoo Outreach organization, Coimbatore, India, Zoo Outreach Organization (ZOO) and National Bureau of Fish Genetic Resources (NBFGR), Lucknow, India, pp 156Google Scholar
  3. 3.
    Ponniah AG, Gopalakrishnan A, Basheer VS, Muneer PMA, Paul B, Padmakumar KG et al (2000) Captive breeding and gene banking of endangered, endemic yellow cat fish Horabagrus brachysoma. National seminar and exhibition on sustainable fisheries and aquaculture, Chennai, India, pp 99Google Scholar
  4. 4.
    Muneer PMA, Gopalakrishnan A, Lal KK, Mohindra V (2007) Population genetic structure of endemic and endangered yellow catfish, Horabagrus brachysoma using allozyme markers. Biochem Genet 45(9–10):637–645. doi: 10.1007/s10528-007-9084-z PubMedCrossRefGoogle Scholar
  5. 5.
    Hallerman EM, Beckmann JS (1988) DNA level polymorphisms as a tool in fisheries science. Can J Fish Aquat Sci 45:1075–1087. doi: 10.1139/f88-131 CrossRefGoogle Scholar
  6. 6.
    Welsh J, McClelland M (1990) Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res 18:7213–7218. doi: 10.1093/nar/18.24.7213 PubMedCrossRefGoogle Scholar
  7. 7.
    Williams JGK, Kubelik AR, Livak KJ, Reafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535. doi: 10.1093/nar/18.22.6531 PubMedCrossRefGoogle Scholar
  8. 8.
    Bardakci F, Skibinski DOF (1994) Application of the RAPD technique in Tilapia fish: species and subspecies identification. J Hered 73:117–123. doi: 10.1038/hdy.1994.110 CrossRefGoogle Scholar
  9. 9.
    Klinbunga S, Boonyapakdee A, Pratoomchat B (2000) Genetic diversity and species- diagnostic markers of mud crabs (Genus Scylla) in Eastern Thailand determined by RAPD analysis. Mar Biotechnol 2:180–187PubMedGoogle Scholar
  10. 10.
    Mamuris Z, Apostolidis AP, Theodorou AJ, Triantaphyllidis C (1998) Application of random amplified polymorphic DNA (RAPD) markers to evaluate intraspecific genetic variation in red mullet (Mullus barbatus). Mar Biol (Berl) 132:171–178. doi: 10.1007/s002270050383 CrossRefGoogle Scholar
  11. 11.
    McCormack GP, Keegan BF (2000) Comparative analysis of three populations of the Brittle star Amphiura filiformis (Echinodermata: Ophiuroides) with different life history strategies using RAPD markers. Mar Biotechnol 2:100–106PubMedGoogle Scholar
  12. 12.
    O’Connell M, Danzmann RG, Cornuet JM, Wright JM, Ferguson MM (1997) Differentiation of rainbow trout (Oncorhynchus mykiss) population in Lake Ontario and the evaluation of the stepwise mutation and infinite allele mutation models using microsatellite variability. Can J Fish Aquat Sci 54:1391–1399. doi: 10.1139/cjfas-54-6-1391 CrossRefGoogle Scholar
  13. 13.
    Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17:6463–6471. doi: 10.1093/nar/17.16.6463 PubMedCrossRefGoogle Scholar
  14. 14.
    Weber JL, May PE (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 44:388–396PubMedGoogle Scholar
  15. 15.
    May B, Kruger CC, Kincaid HL (1997) Genetic variation at microsatellite loci in strugeon: primer sequence homology in Acipenser and Scaphirhynchus. Can J Fish Aquat Sci 51:1542–1547. doi: 10.1139/cjfas-54-7-1542 CrossRefGoogle Scholar
  16. 16.
    Scribner KT, Gust JR, Fields RL (1996) Isolation and characterization of novel salmon microsatellite loci: cross-species amplification and population genetic applications. Can J Fish Aquat Sci 53:833–841. doi: 10.1139/cjfas-53-4-833 CrossRefGoogle Scholar
  17. 17.
    Taggart JB, Hynes RA, Prodohl PA, Ferguson A (1992) A simplified protocol for routine total DNA isolation from salmonid fishes. J Fish Biol 40:963–965. doi: 10.1111/j.1095-8649.1992.tb02641.x CrossRefGoogle Scholar
  18. 18.
    Yeh FC, Yang RC, Boyle T (1999) POPGENE 32, Version 1.31. Population genetics software. Hyperlink http.//www.ualberta.ca/~fyeh/fyeh/
  19. 19.
    Khoo G, Lim KF, Gan DKY, Chen F, Chan WK, Lim TM et al (2002) Genetic diversity within and among feral populations and domesticated strains of the guppy (Poecilia reticulata) in Singapore. Mar Biotechnol 4:367–378. doi: 10.1007/s10126-002-0007-z PubMedCrossRefGoogle Scholar
  20. 20.
    Wright S (1951) The genetical structure of populations. Ann Eugenet 15:324–354Google Scholar
  21. 21.
    Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  22. 22.
    Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedGoogle Scholar
  23. 23.
    Sneath PHA, Sokal RR (1973) Numerical taxonomy. W.H. Freeman, San Francisco, pp 573Google Scholar
  24. 24.
    Felsenstein J (1993) PHYLIP (Phylogeny inference package), version 3.5, distributed by the author, University of Washington, SeattleGoogle Scholar
  25. 25.
    Lehmann D, Hettwer H, Taraschewski H (2000) RAPD-PCR investigations of systematic relationships among four species of eels (Teleostei: Anguillidae), particularly Anguilla anguilla and A. rostrata. Mar Biol (Berl) 137:195–204. doi: 10.1007/s002270000349 CrossRefGoogle Scholar
  26. 26.
    Volckaert FAM, Helleman BAS, Poyaud L (1999) Nine polymorphic microsatellite markers in the South East Asian Catfishes Pangasius hypophthalmus and Clarias batrachus. Anim Genet 30:383–384. doi: 10.1046/j.1365-2052.1999.00526-2.x CrossRefGoogle Scholar
  27. 27.
    Na-Nakorn U, Taniguchi N, Nugroho E, Seki S, Kamonrat W (1999) Isolation and characterization of microsatellite loci of Clarias macrocephalus and their application to genetic diversity study. Fish Sci 65(4):520–526Google Scholar
  28. 28.
    Galbusera P, Volckaert F, Hellemans BA, Ollevier F (1996) Isolation and characterisation of microsatellite markers in the African catfish, Clarias gariepinus (Burchell, 1822). Mol Ecol 5:703–705. doi: 10.1111/j.1365-294X.1996.tb00366.x PubMedCrossRefGoogle Scholar
  29. 29.
    Raymond M, Rousset F (1998) GENEPOP (ver. 3.1): a population genetics software for exact test and ecumenicism. J Hered 86:248–249Google Scholar
  30. 30.
    Belkhir K, Borsa P, Goudet J, Chikhi L, Bonhomme F (1997) GENETIX logicielsous windows pour Ia ge’ne’tique des populations, http://www.univ- montp2.fr/~gentix/genetix/html
  31. 31.
    Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotying errors in microsatellite data. Mol Ecol Notes 4:535–538. doi: 10.1111/j.1471-8286.2004.00684.x CrossRefGoogle Scholar
  32. 32.
    Van Oosterhout C, Weetman D, Hutchinson WF (2006) Estimation and adjustment of microsatellite null alleles in non equilibrium populations. Mol Ecol Notes 6:255–256. doi: 10.1111/j.1471-8286.2005.01082.x CrossRefGoogle Scholar
  33. 33.
    Wright S (1978) Evolution and the genetics of populations. Vol. 4. Variability within and among natural populations. University of Chicago Press, Chicago, ILGoogle Scholar
  34. 34.
    Appleyard SA, Mather PB (2002) Genetic characterization of cultured Tilapia in Fiji using allozymes and random amplified polymorphic DNA. Asian Fish Sci 15:249–264Google Scholar
  35. 35.
    Callejas C, Ochando MD (2002) Phylogenetic relationships among Spanish Barbus species (Pisces, Cyprinidae) shown by RAPD. Heredity 89:36–43. doi: 10.1038/sj.hdy.6800091 PubMedCrossRefGoogle Scholar
  36. 36.
    Gopalakrishnan A, Mohindra V (2001) Molecular markers. In: Mohindra V, Lal KK, Gopalakrishnan A, Ponniah AG (eds) Molecular markers: tools for fish population genetic analysis protocols. NBFGR-NATP National Bureau of Fish Genetic Resources, Lucknow, pp A22–A27Google Scholar
  37. 37.
    Galbusera P, Van S, Matthysen E (2000) Cross-species amplicifcation of microsatellite primers in passerine birds. Conserv Genet 1:163–168. doi: 10.1023/A:1026587024065 CrossRefGoogle Scholar
  38. 38.
    Zardoya R, Vollmer DM, Craddock C, Streelman JT, Karl S, Meyer A (1996) Evolutionary conservation of microsatellite flanking regions and their use in resolving the phylogeny of cichlid fishes (Pisces: Perciformes). Proc R Soc Lond B Biol Sci 263:1589–1598. doi: 10.1098/rspb.1996.0233 CrossRefGoogle Scholar
  39. 39.
    Yoon JK, Kim GW (2001) Randomly amplified polymorphic DNA-polymerase chain reaction analysis of two different populations of cultured Korean catfish Silurus asotus. J Biosci 26:641–647. doi: 10.1007/BF02704762 PubMedCrossRefGoogle Scholar
  40. 40.
    Chong LK, Tan SG, Yusoff K, Siraj SS (2000) Identification and characterization of Malaysian river catfish Mystus nemurus (C and V) by RAPD and AFLP analysis. Biochem Genet 38:63–76. doi: 10.1023/A:1002740613034 PubMedCrossRefGoogle Scholar
  41. 41.
    Liu ZJ, Li P, Argue B, Dunham R (1998) Inheritance of RAPD markers in channel catfish (Ictalurus punctatus), blue catfish (I. furcatus) and their F1, F2 and backcross hybrids. Anim Genet 29:58–62. doi: 10.1046/j.1365-2052.1998.00284.x CrossRefGoogle Scholar
  42. 42.
    Gomes C, Dales RBG, Oxenford HA (1998) The application of RAPD markers in stock discrimination of the four-wing flying fish, Hirundichthys affinis in the central western Atlantic. Mol Ecol 7:1029–1039. doi: 10.1046/j.1365-294x.1998.00427.x CrossRefGoogle Scholar
  43. 43.
    Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  44. 44.
    Cagigas ME, Vazquez E, Blanco G, Sanchez JA (1999) Combined assessment of genetic variability in populations of brown trout (Salmo trutta L.) based on allozymes, microsatellites, and RAPD markers. Mar Biotechnol 1:286–296. doi: 10.1007/PL00011778 PubMedCrossRefGoogle Scholar
  45. 45.
    Estoup A, Presa P, Krieg F, Vaiman D, Guyomard R (1993) (CT)n and (GT)n microsatellites; a new class of genetic markers for Salmo trutta L. (brown trout). Heredity 71:488–496. doi: 10.1038/hdy.1993.167 PubMedCrossRefGoogle Scholar
  46. 46.
    Ruzzante D (1998) A comparison of several measurers of genetic distance and population structure with microsatellite data: bias and sampling variance. Can J Fish Aquat Sci 55:1–14. doi: 10.1139/cjfas-55-1-1 CrossRefGoogle Scholar
  47. 47.
    Neff BD, Gross MR (2001) Microsatellite evolution in vertebrates: inference from AC dinucleotide repeats. Evolution Int J Org Evolution 55(9):1717–1733Google Scholar
  48. 48.
    Usmani S, Tan SG, Siraj SS, Yusoff K (2003) Population structure of the southeast catfish, Mystus nemurus. Anim Genet 34:462–464. doi: 10.1046/j.0268-9146.2003.01064.x PubMedCrossRefGoogle Scholar
  49. 49.
    Watanabe K, Watanabe T, Nishida M (2001) Isolation and characterization of microsatellite loci from the endangered bagrid catfish, Pseudobagrus ichikawai. Mol Ecol Notes 1:61–63. doi: 10.1046/j.1471-8278.2000.00024.x CrossRefGoogle Scholar
  50. 50.
    Donnelly MJ, Cuamba N, Charlwood JD, Collins FH, Townson H (1999) Population structure in the malaria vector, Anopheles arabiensis patton, in the East Africa. Heredity 83:408–417. doi: 10.1038/sj.hdy.6885930 PubMedCrossRefGoogle Scholar
  51. 51.
    Gibbs HL, Prior KA, Weatherhead PJ, Johnson G (1997) Genetic structure of populations of the threatened eastern massasuaga rattlesnake, Sistrurus catenatus: evidence from microsatellite DNA markers. Mol Ecol 6:1123–1132. doi: 10.1046/j.1365-294X.1997.00284.x PubMedCrossRefGoogle Scholar
  52. 52.
    Beaumont AR, Hoare K (2003) Biotechnology and genetic in fisheries and aquaculture. Blackwell, MaldenCrossRefGoogle Scholar
  53. 53.
    Paetkau D, Strobeck C (1995) The molecular basis and evolutionary history of a microsatellite null allele in bears. Mol Ecol 4:519–520. doi: 10.1111/j.1365-294X.1995.tb00248.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • P. M. Abdul Muneer
    • 1
    • 2
  • A. Gopalakrishnan
    • 1
  • K. K. Musammilu
    • 1
  • Vindhya Mohindra
    • 3
  • K. K. Lal
    • 3
  • V. S. Basheer
    • 1
  • W. S. Lakra
    • 3
  1. 1.National Bureau of Fish Genetic Resources (NBFGR) Cochin UnitCochinIndia
  2. 2.Molecular Biology and Genetic Engineering Research Unit, School of BiosciencesMar Athanasios College for Advanced Studies (MACFAST)ThiruvallaIndia
  3. 3.NBFGRLucknowIndia

Personalised recommendations