Advertisement

Molecular Biology Reports

, Volume 36, Issue 6, pp 1399–1404 | Cite as

Post-synthetic acetylation of HMGB1 protein modulates its interactions with supercoiled DNA

  • Iva Ugrinova
  • Iliya G. Pashev
  • Evdokia A. Pasheva
Article

Abstract

High mobility group box (HMGB) proteins 1 and 2 are abundant non-histone nuclear proteins that regulate chromatin structure because of their structure-specific binding to DNA. Here, we have investigated how the post-synthetic acetylation of HMGB1 affects its interaction with negatively supercoiled DNA by employing monoacetylated at Lys2 protein, isolated from butyrate-treated cells. Our data reveal that this modification enhances three reaction parameters: binding affinity, supercoiling activity and capacity to protect the supercoiled DNA from relaxation by topoisomerase I. We show that monoacetylation at Lys2 mimics the effect of acidic tail removal but to a lesser extent thus demonstrating that in vivo acetylated HMGB1 is capable of modulating its interaction with negatively supercoiled DNA.

Keywords

Acetylated HMGB1 HMGB1 protein Supercoiled DNA Tailless HMGB1 

Abbreviations

EMSA

Electrophoretic mobility shift assay

HMGB1

High mobility group box protein 1

HMGB1tr

Truncated HMGB1 protein, lacking the acidic tail

HMGB1rec

Recombinant HMGB1 protein

HMGB1ac

Monoacetylated HMGB1 protein

S, L

Supercoiled and linearized forms of pEGFP-N, respectively

Notes

Acknowledgements

This work was partially supported by Grant TKB 1608 from the National Science Fund, Ministry of Education and Science of Republic of Bulgaria.

References

  1. 1.
    Jantzen H-M, Admon A, Bell SP, Tijan R (1990) Nucleolar transcription factor hUBF contains a DNA binding motif with homology HMG proteins. Nature 344:830–836. doi: 10.1038/344830a0 PubMedCrossRefGoogle Scholar
  2. 2.
    Agresti A, Bianchi ME (2003) HMGB proteins and gene expression. Curr Opin Genet Dev 13:170–178. doi: 10.1016/S0959-437X(03)00023-6 PubMedCrossRefGoogle Scholar
  3. 3.
    Thomas JO, Travers AA (2001) HMG1 and 2, and related ‘architectural’ DNA binding proteins. Trends Biochem Sci 26:167–174. doi: 10.1016/S0968-0004(01)01801-1 PubMedCrossRefGoogle Scholar
  4. 4.
    Bustin M (1999) Regulation of DNA-dependent activities by the functional motifs of the high mobility group chromosomal proteins. Mol Cell Biol 19:5237–5246PubMedGoogle Scholar
  5. 5.
    Bustin M, Reeves R (1996) High-mobility group chromosomal proteins: Architectural components that facilitates chromatin function. Prog Nucleic Acid Res Mol Biol 54:35–100. doi: 10.1016/S0079-6603(08)60360-8 PubMedCrossRefGoogle Scholar
  6. 6.
    Calogero S, Grassi F, Aguzzi A, Voitlander T, Ferrier P, Ferrari S et al (1999) The lack of chromosomal protein Hmg1 does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice. Nat Genet 22:276–280. doi: 10.1038/10338 PubMedCrossRefGoogle Scholar
  7. 7.
    Bianchi ME, Beltrame M, Paonessa G (1989) Specific recognition of cruciform DNA by nuclear protein HMG1. Science 243:1056–1059. doi: 10.1126/science.2922595 PubMedCrossRefGoogle Scholar
  8. 8.
    Pil PM, Lippard SJ (1992) Specific binding of chromosomal protein HMG1 to DNA damaged by the anticancer drug cisplatin (1992). Science 256:234–237. doi: 10.1126/science.1566071 PubMedCrossRefGoogle Scholar
  9. 9.
    Pasheva EA, Pashev IG, Favre A (1998) Preferential binding of high mobility group 1 protein to UV damaged DNA. J Biol Chem 273:24730–24736. doi: 10.1074/jbc.273.38.24730 PubMedCrossRefGoogle Scholar
  10. 10.
    Sheflin LG, Fucile NW, Spaulding SW (1993) The specific interaction of HMG 1 and 2 with negatively supercoiled DNA are modulated by their acidic C-terminal domains and involve cysteine residues in their HMG1/2 boxes. Biochemistry 32:3238–3248. doi: 10.1021/bi00064a005 PubMedCrossRefGoogle Scholar
  11. 11.
    Sheflin LG, Spaulding SW (1989) High mobility group protein 1 preferentially conserves torsion in negatively supercoiled DNA. Biochemistry 28:5658–5664. doi: 10.1021/bi00439a048 PubMedCrossRefGoogle Scholar
  12. 12.
    Mathis DJ, Kindelis A, Spadafora C (1980) HMG proteins (1 + 2) for beaded structures when complexed with closed circular DNA. Nucleic Acids Res 8:22577–22590. doi: 10.1093/nar/8.12.2577 CrossRefGoogle Scholar
  13. 13.
    Pil PM, Chow CS, Lippard SJ (1993) High mobility-group 1 protein mediates the DNA binding as determined by ring closures. Proc Natl Acad Sci USA 90:9465–9469. doi: 10.1073/pnas.90.20.9465 PubMedCrossRefGoogle Scholar
  14. 14.
    Paull TT, Haykinson MJ, Johnson RC (1993) The non-specific DNA-binding and-bending proteins HMG1 and HMG2 promote the assembly of complex nucleoprotein structures. Genes Dev 7:1521–1534. doi: 10.1101/gad.7.8.1521 PubMedCrossRefGoogle Scholar
  15. 15.
    Travers AA (2003) Priming the nucleosome: a role for HMGB proteins? EMBO Rep 4:131–136. doi: 10.1038/sj.embor.embor741 PubMedCrossRefGoogle Scholar
  16. 16.
    Wisniewski JR, Schulze E, Sapetto B (1994) DNA binding and nuclear translocation of insect high-mobility-group-protein-1 (HMG1) proteins are inhibited by phosphorylation. Eur J Biochem 255:987–993Google Scholar
  17. 17.
    Wisniewski JR, Szewczuk Z, Petry I, Schwanbeck R, Renner U (1999) Constitutive phosphorylation of the acidic tails of the high mobility group 1 proteins by casein kinase II alters their conformation, stability and DNA binding specificity. J Biol Chem 274:20116–20122. doi: 10.1074/jbc.274.40.28175 PubMedCrossRefGoogle Scholar
  18. 18.
    Stemmer C, Schwander A, Bauw G, Fojan P, Grasser KD (2002) Protein kinase CK2 differentially phosphorylated maize chromosomal high mobility group B (HMGB) proteins modulating their stability and DNA interactions. J Biol Chem 277:1092–1098. doi: 10.1074/jbc.M109503200 PubMedCrossRefGoogle Scholar
  19. 19.
    Sterner R, Vidali G, Heinrikson RL, Allfrey VG (1978) Postsynthetic modification of high mobility group proteins Evidence that high mobility group proteins are acetylated. J Biol Chem 253:7601–7609PubMedGoogle Scholar
  20. 20.
    Ugrinova I, Pasheva EA, Armengaud J, Pashev IG (2001) In vivo acetylation of HMG1 protein enhances its binding affinity to distorted DNA structures. Biochemistry 40:14655–14660. doi: 10.1021/bi0113364 PubMedCrossRefGoogle Scholar
  21. 21.
    Ugrinova I, Mitkova E, Moskalenko C, Pashev IG, Pasheva EA (2007) DNA bending versus DNA end-joining activity of HMGB1 protein is modulated in vitro by acetylation. Biochemistry 46:2111–2117. doi: 10.1021/bi0614479 PubMedCrossRefGoogle Scholar
  22. 22.
    Mitkova E, Ugrinova I, Pashev I, Pasheva E (2005) The inhibitory effect of HMGB1 protein on the repair of cis-platin damaged DNA is accomplished through the acidic domain. Biochemistry 44:5893–5898. doi: 10.1021/bi047712c PubMedCrossRefGoogle Scholar
  23. 23.
    Topalova D, Ugrinova I, Pashev IG, Pasheva EA (2008) HMGB1 protein inhibits DNA replication in vitro: a role of the acetylation and the acidic tail. Int J Biochem Cell Biol 40:1536–1542. doi: 10.1016/j.biocel.2007.11.014 PubMedCrossRefGoogle Scholar
  24. 24.
    Stros M, Reich J (1998) Formation of large nucleoprotein complexes upon binding of the high-mobility group (HMG) box B-domain of HMG1 protein to supercoiled DNA. Eur J Biochem 251:427–434. doi: 10.1046/j.1432-1327.1998.2510427.x PubMedCrossRefGoogle Scholar
  25. 25.
    Javaherian K, Liu LF, Wang JC (1978) Nonhistone proteins HMG1 and HMG2 change the DNA helical structure. Science 199:1345–1346. doi: 10.1126/science.628842 PubMedCrossRefGoogle Scholar
  26. 26.
    Stros M, Stokrova J, Thomas JO (1994) DNA looping by the HMG box domains of HMG1 and modulation of DNA binding by the acidic C-terminal domain. Nucleic Acids Res 22:1044–1051. doi: 10.1093/nar/22.6.1044 PubMedCrossRefGoogle Scholar
  27. 27.
    Hu CH, McStay B, Jeong SW, Reeder RH (1994) UBF an RNA polymerase I transcription factor, binds crossover DNA with low sequence specificity. Mol Cell Biol 14:2871–2882PubMedGoogle Scholar
  28. 28.
    Teo SH, Grasser KD, Thomas JO (1995) Differences in the DNA-binding properties of the HMG-box domains of HMG1 and the sex-determining factor SRY. Eur J Biochem 230:943–950. doi: 10.1111/j.1432-1033.1995.tb20640.x PubMedCrossRefGoogle Scholar
  29. 29.
    Sterner R, Vidali G, Heinrikson RL, Allfrey VG (1978) Postsynthetic modification of high mobility group proteins Evidence that high mobility group proteins are acetylated. J Biol Chem 253:7601–7760PubMedGoogle Scholar
  30. 30.
    Bianchi ME (1995) The HMG-box domain. In: Lilley DMJ (ed) DNA: protein structural interactions. IRL Press, Oxford, pp 177–200Google Scholar
  31. 31.
    Gu W, Roeder RG (1997) Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90:595–605. doi: 10.1016/S0092-8674(00)80521-8 PubMedCrossRefGoogle Scholar
  32. 32.
    Martinez-Balbas MA, Bauer U-M, Nielsen SJ, Brehm A, Kouzarides T (2000) Regulation of E2F1 activity by acetylation. EMBO J 19:662–671. doi: 10.1093/emboj/19.4.662 PubMedCrossRefGoogle Scholar
  33. 33.
    Boyes J, Byfield P, Nakatani Y, Ogryzko V (1998) Regulation of activity of the transcription factor GATA-1 by acetylation. Nature 396:594–598. doi: 10.1038/25166 PubMedCrossRefGoogle Scholar
  34. 34.
    Zhang W, Bieker JJ (1998) Acetylation and modulation of erythroid Krupel-like factor (EKLF) activity by interaction with histone acetyltransferases. Proc Natl Acad Sci USA 95:9855–9860. doi: 10.1073/pnas.95.17.9855 PubMedCrossRefGoogle Scholar
  35. 35.
    Munshi N, Merika M, Yie J, Senger K, Chen G, Thanos D (1998) Acetylation of HMGBI(Y) by CBP turns off IFN beta-expression by disrupting the enhanceosome. Mol Cell 24:457–467. doi: 10.1016/S1097-2765(00)80145-8 CrossRefGoogle Scholar
  36. 36.
    Veilleux S, Caron N, Boissoneault G (2000) Comparative study of the coupling between topoisomerase I activity and high-mobility group proteins in E coli and mammalian cells. DNA Cell Biol 19:421–429. doi: 10.1089/10445490050085915 PubMedCrossRefGoogle Scholar
  37. 37.
    Alami-Ouahabi N, Veilleux S, Meistrich M, Boissoneault G (1996) The testis-specific high mobility group protein, a phosphorylation-dependent DNA-packaging factor of elongating and condensing spermatids. Mol Cell Biol 16:3720–3729PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Iva Ugrinova
    • 1
  • Iliya G. Pashev
    • 1
  • Evdokia A. Pasheva
    • 1
  1. 1.Institute of Molecular biologyBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations