Skip to main content
Log in

Epidermal growth factor receptors: function modulation by phosphorylation and glycosylation interplay

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Post-translational modifications (PTMs) of proteins induce structural and functional changes that are most often transitory and difficult to follow and investigate in vivo. In silico prediction procedures for PTMs are very valuable to foresee and define such transitory changes responsible for the multifunctionality of proteins. Epidermal growth factor receptor (EGFR) is such a multifunctional transmembrane protein with intrinsic tyrosine kinase activity that is regulated primarily by ligand-stimulated transphosphorylation of dimerized receptors. In human EGFR, potential phosphorylation sites on Ser, Thr and Tyr residues including five autophosphorylation sites on Tyr were investigated using in silico procedures. In addition to phosphorylation, O-GlcNAc modifications and interplay between these two modifications was also predicted. The interplay of phosphorylation and O-GlcNAc modification on same or neighboring Ser/Thr residues is termed as Yin Yang hypothesis and the interplay sites are named as Yin Yang sites. Amongst these modification sites, one residue is localized in the juxtamembrane (Thr 654) and two are found in the catalytic domain (Ser 1046/1047) of the EGFR. We propose that, when EGFR is O-GlcNAc modified on Thr 654, EGFR may be transferred from early to late endosomes, whereas when EGFR is O-GlcNAc modified on Ser 1046/1047 desensitization of the receptor may be prevented. These findings suggest a complex interplay between phosphorylation and O-GlcNAc modification resulting in modulation of EGFR’s functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tang PA, Moore MJ (2006) Epidermal growth factor receptor antagonists in pancreatic cancer: what is their role? Am J Cancer 5:213–221

    Article  CAS  Google Scholar 

  2. Hida K, Klagsbrun M (2005) A new perspective on tumor endothelial cells: unexpected chromosome and centrosome abnormalities. Cancer Res 65:2507–2510

    Article  PubMed  CAS  Google Scholar 

  3. Schlessinger J (2000) Cell signaling by receptor tyrosine kinases. Cell 103:211–225

    Article  PubMed  CAS  Google Scholar 

  4. Downward J, Parker P, Waterfield MD (1984) Autophosphorylation sites on the epidermal growth factor receptor. Nature 311:483–485

    Article  PubMed  CAS  Google Scholar 

  5. Walton GM, Chen WS, Rosenfeld MG et al (1990) Analysis of deletions of the carboxyl terminus of the epidermal growth factor receptor reveals self-phosphorylation at tyrosine 992 and enhanced in vivo tyrosine phosphorylation of cell substrates. J Biol Chem 265:1750–1754

    PubMed  CAS  Google Scholar 

  6. Margolis BL, Lax I, Kris R et al (1989) All autophosphorylation sites of epidermal growth factor (EGF) receptor and HER2/neu are located in their carboxyl-terminal tails. Identification of a novel site in EGF receptor. J Biol Chem 264:10667–10671

    PubMed  CAS  Google Scholar 

  7. Tebar F, Lladó A, Enrich C (2002) Role of calmodulin in the modulation of the MAPK signalling pathway and the transactivation of epidermal growth factor receptor mediated by PKC. FEBS Lett 517:206–210

    Article  PubMed  CAS  Google Scholar 

  8. Countaway JL, Nairn AC, Davis RJ (1992) Mechanism of desensitization of the epidermal growth factor receptor protein-tyrosine kinase. J Biol Chem 267:1129–1140

    PubMed  CAS  Google Scholar 

  9. Aifa S, Frikha F, Miled N et al (2006) Phosphorylation of Thr654 but not Thr669 within the juxtamembrane domain of the EGF receptor inhibits CaM binding. Biochem Biophys Res Commun 347:381–387

    Article  PubMed  CAS  Google Scholar 

  10. Aifa S, Johansen K, Nilsson UK et al (2002) Interactions between the juxtamembrane domain of the EGFR and calmodulin measured by surface plasmon resonance. Cell Signal 14:1005–1013

    Article  PubMed  CAS  Google Scholar 

  11. Bao J, Alroy I, Waterman H et al (2000) Threonine phosphorylation diverts internalized epidermal growth factor receptors from a degradative pathway to the recycling endosome. J Biol Chem 275:26178–26186

    Article  PubMed  CAS  Google Scholar 

  12. Barbier AJ, Poppleton HM, Yigzaw Y et al (1999) Transmodulation of epidermal growth factor receptor function by cyclic AMP-dependent protein kinase. J Biol Chem 274:14067–14073

    Article  PubMed  CAS  Google Scholar 

  13. Morrison P, Saltiel AR, Rosner MR (1996) Role of mitogen-activated protein kinase kinase in regulation of the epidermal growth factor receptor by protein kinase C. J Biol Chem 271:12891–12896

    Article  PubMed  CAS  Google Scholar 

  14. Morrison P, Takishima K, Rosner MR (1993) Role of threonine residues in regulation of epidermal growth factor receptor by protein kinase C and mitogen-activated protein kinase. J Biol Chem 268:15536–15543

    PubMed  CAS  Google Scholar 

  15. Northwood IC, Gonzalez FA, Wartmann M et al (1991) Isolation and characterization of two growth factor-stimulated protein kinases that phosphorylate the epidermal growth factor receptor at threonine 669. J Biol Chem 266:15266–15276

    PubMed  CAS  Google Scholar 

  16. Takishima K, Griswold-Prenner I, Ingebritsen T et al (1991) Epidermal growth factor (EGF) receptor T669 peptide kinase from 3T3-L1 cells is an EGF-stimulated “MAP” kinase. Proc Natl Acad Sci 88:2520–2524

    Article  PubMed  CAS  Google Scholar 

  17. Chen N, Ma W-Y, She Q-B et al (2001) Transactivation of the epidermal growth factor receptor is involved in 12-O-tetradecanoylphorbol-13-acetate-induced signal transduction. J Biol Chem 276:46722–46728

    Article  PubMed  CAS  Google Scholar 

  18. Comer FI, Hart GW (2000) O-Glycosylation of nuclear and cytosolic proteins: dynamic interplay between O-GlcNAc and O-Phosphate. J Biol Chem 275:29179–29182

    Article  PubMed  CAS  Google Scholar 

  19. Wells L, Whelan SA, Hart GW (2003) O-GlcNAc: a regulatory post-translational modification. Biochem Biophys Res Com 302:435–441

    Article  PubMed  CAS  Google Scholar 

  20. Sprung R, Nandi A, Chen Y et al (2005) Tagging-via-substrate strategy for probing O-GlcNAc modified proteins. J Proteome Res 4:950–957

    Article  PubMed  CAS  Google Scholar 

  21. Nielsen H, Brunak S, VonHeijne G (1999) Machine learning approach for prediction of signal peptide and other protein signals. Protein Eng 12:3–9

    Article  PubMed  CAS  Google Scholar 

  22. Schueler-Furman O, Baker D (2003) Conserved residue clustering and protein structure prediction. Proteins 52:225–235

    Article  PubMed  CAS  Google Scholar 

  23. Kaleem A, Hoessli DH, Ahmad I et al (2008) Immediate-early gene regulation by interplay between different post-translational modifications on human histone H3. J Cell Biochem 103:835–851. doi:10.1002/jcb.21454

    Google Scholar 

  24. Khwaja TA, Wajahat T, Ahmad I et al (2008) In silico modulation of apoptotic Bcl-2 proteins by mistletoe lectin-1: functional consequences of protein modifications. J Cell Biochem 103:479–491. doi:10.1002/jcb.21412

    Google Scholar 

  25. Ahmad I, Hoessli DC, Walker-Nasir E et al (2006) Oct-2 DNA binding transcription factor: functional consequences of phosphorylation and glycosylation. Nucleic Acids Res 34:175–184

    Article  PubMed  CAS  Google Scholar 

  26. Boeckmann B, Bairoch A, Apweiler R et al (2003) The Swiss-Prot protein knowledge base and its supplement TrEMBL in 2003. Nucleic Acids Res 31:365–370

    Article  PubMed  CAS  Google Scholar 

  27. Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  28. Thompson JD, Higgins DG, Gibson TJ (1994) ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  29. Blom N, Gammeltoft S, Brunak S (1999) Sequence- and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294:1351–1362

    Article  PubMed  CAS  Google Scholar 

  30. Kreegipuu A, Blom N, Brunak S (1999) PhosphoBase, a database of phosphorylation sites: release 2.0. Nucleic Acids Res 27:237–239

    Article  PubMed  CAS  Google Scholar 

  31. Blom N, Sicheritz-Ponten T, Gupta R et al (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4:1633–1649

    Article  PubMed  CAS  Google Scholar 

  32. Stover DR, Becker M, Liebetanz J et al (1995) Src phosphorylation of the epidermal growth factor receptor at novel sites mediates receptor interaction with Src and P85 alpha. J Biol Chem 270:15591–15597

    Article  PubMed  CAS  Google Scholar 

  33. Wang Y, Pennock S, Chen X et al (2002) Endosomal signaling of epidermal growth factor receptor stimulates signal transduction pathways leading to cell survival. Mol Cell Biol 22:7279–7290

    Article  PubMed  CAS  Google Scholar 

  34. Burke P, Schooler K, Wiley HS (2001) Regulation of epidermal growth factor receptor signaling by endocytosis and intracellular trafficking. Mol Biol Cell 12:897–1910

    Google Scholar 

  35. Levkowitz G, Waterman H, Ettenberg SA et al (1999) Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol Cell 4:1029–1040

    Article  PubMed  CAS  Google Scholar 

  36. Huang F, Kirkpatrick D, Jiang X et al (2006) Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol Cell 21:737–748

    Article  PubMed  CAS  Google Scholar 

  37. Huang F, Goh LK, Sorkin A (2007) EGF receptor ubiquitination is not necessary for its internalization. PNAS 104:16904–16909

    Article  PubMed  CAS  Google Scholar 

  38. de Melker AA, van der Horst G, Borst J (2004) Ubiquitin ligase activity of c-Cbl guides the epidermal growth factor receptor into clathrin-coated pits by two distinct modes of Eps15 recruitment. J Biol Chem 279:55465–55473

    Article  PubMed  Google Scholar 

  39. Griffith LS, Schmitz B (1999) O-linked N-acetylglucosamine levels in cerebellar neurons respond reciprocally to pertubations of phosphorylation. Eur J Biochem 262:824–831

    Article  PubMed  CAS  Google Scholar 

  40. Feinmesser RL, Wicks SJ, Taverner CJ et al (1999) Ca2+/Calmodulin-dependent kinase II phosphorylates the epidermal growth factor receptor on multiple sites in the cytoplasmic tail and serine 744 within the kinase domain to regulate signal generation. J Biol Chem 274:16168–16173

    Article  PubMed  CAS  Google Scholar 

  41. Liu J, Pang Y, Chang T et al (2006) Increased hexosamine biosynthesis and protein O-GlcNAc levels associated with myocardial protection against calcium paradox and ischemia. J Mol Cell Cardiol 40:1303–1312

    Google Scholar 

  42. Cole RN, Hart GW (1999) Glycosylation sites flank phosphorylation sites on synapsin I: O-linked N-acetylglucosamine residues are localized within domains mediating synapsin I interactions. J Neurochem 73:418–428

    Article  PubMed  CAS  Google Scholar 

  43. Matthews JA, Acevedo-Duncan M, Potter RL (2005) Selective decrease of membrane-associated PKC-a and PKC-e in response to elevated intracellular O-GlcNAc levels in transformed human glial cells. Biochim Biophys Acta 1743:305–315

    Article  PubMed  CAS  Google Scholar 

  44. Love DC, Hanover JA (2005) The hexosamine signaling pathway: deciphering the “O-GlcNAc code”. Sci STKE 312:re13

    Article  Google Scholar 

  45. Kreppel LK, Blomberg MA, Hart GW (1997) Dynamic glycosylation of nuclear and cytosolic proteins cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J Biol Chem 272:9308–9315

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

Nasir-ud-Din acknowledges support from Pakistan Academy of Sciences for this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abdul Rauf Shakoori or Nasir-ud-Din.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaleem, A., Ahmad, I., Hoessli, D.C. et al. Epidermal growth factor receptors: function modulation by phosphorylation and glycosylation interplay. Mol Biol Rep 36, 631–639 (2009). https://doi.org/10.1007/s11033-008-9223-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-008-9223-6

Keywords

Navigation