Advertisement

Molecular Biology Reports

, Volume 35, Issue 4, pp 567–573 | Cite as

A novel Otubain-like cysteine protease gene is preferentially expressed during somatic embryogenesis in Pinus radiata

  • Felipe Aquea
  • Florencia Gutiérrez
  • Consuelo Medina
  • Patricio Arce-Johnson
Article

Abstract

OTUBAINS are a recently discovered family of cysteine proteases that participate in the ubiquitin pathway. These proteins were originally described in animal systems and are involved in removing the ubiquitin chain attached to a protein destined for degradation. In a cDNA-AFLP screen designed to identify genes that are expressed during early somatic embryogenesis in the conifer Pinus radiata, a fragment-derived transcript corresponding to an Otubain-like cysteine protease was identified. The full-length cDNA contained an 885 bp ORF encoding 294 amino acids, and was named PrOTUBAIN. The deduced protein showed high identity to other OTUBAINS and contained an OTU domain and a catalytic triad characteristic of cysteine proteases. The 3-D model of PrOTUBAIN showed significant similarity to human OTUBAIN2, suggesting that the plant protein may possess functions similar to that of the human protein. Real time PCR assays demonstrated that PrOTUBAIN is expressed in different tissues and that transcript are particularly abundant in embryogenic tissues. This is the first report of this class of protein in higher plants and the putative role of PrOTUBAIN is discussed.

Keywords

Deubiquitinase OTUBAIN Pinus radiata Somatic embryogenesis  Ubiquitin pathway 

Abbreviations

cDNA-AFLP

DNA complementary to RNA-amplified fragment length polymorphism

DUB

Deubiquitinase

OTU

Ovarian tumor

SE

Somatic embryogenesis

TDF

Transcript-derived fragment

Notes

Acknowledgements

Felipe Aquea was supported by a PhD fellowship from CONICYT, Chilean National Council of Science and Technology and VRAID, Pontificia Universidad Católica de Chile.

References

  1. 1.
    Callis J, Vierstra RD (2000) Protein degradation in signaling. Curr Opin Plant Biol 3:381–386PubMedCrossRefGoogle Scholar
  2. 2.
    Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479PubMedCrossRefGoogle Scholar
  3. 3.
    Vierstra RD (1996) Proteolysis in plants: mechanisms and functions. Plant Mol Biol 32:275–302PubMedCrossRefGoogle Scholar
  4. 4.
    Pickart CM, Eddins MJ (2004) Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta 1695:55–72PubMedCrossRefGoogle Scholar
  5. 5.
    Moon J, Parry G, Estelle M (2004) The ubiquitin-proteasome pathway and plant development. Plant Cell 16:3181–3195PubMedCrossRefGoogle Scholar
  6. 6.
    Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK, Bernards R (2005) A genomic and functional inventory of deubiquitinating enzymes. Cell 123:773–786PubMedCrossRefGoogle Scholar
  7. 7.
    Balakirev MY, Tcherniuk SO, Jaquinod M, Chroboczek J (2003) Otubains: a new family of cysteine proteases in the ubiquitin pathway. EMBO Rep 4:517–522PubMedCrossRefGoogle Scholar
  8. 8.
    Evans PC, Smith TS, Lai MJ, Williams MG, Burke DF, Heyninck K, Kreike MM, Beyaert R, Blundell TL, Kilshaw PJ (2003) A novel type of deubiquitinating enzyme. J Biol Chem 278:23180–23186PubMedCrossRefGoogle Scholar
  9. 9.
    Doelling JH, Yan N, Kurepa J, Walker J, Vierstra RD (2001) The ubiquitin-specific protease UBP14 is essential for early embryo development in Arabidopsis thaliana. Plant J 27:393–405PubMedCrossRefGoogle Scholar
  10. 10.
    Yan N, Doelling JH, Falbel TG, Durski AM, Vierstra RD (2000) The ubiquitin-specific protease family from Arabidopsis. AtUBP1 and 2 are required for the resistance to the amino acid analog canavanine. Plant Physiol 124:1828–1843PubMedCrossRefGoogle Scholar
  11. 11.
    Moon BC, Choi MS, Kang YH, Kim MC, Cheong MS, Park CY, Yoo JH, Koo SC, Lee SM, Lim CO, Cho MJ, Chung WS (2005) Arabidopsis ubiquitin-specific protease 6 (AtUBP6) interacts with calmodulin. FEBS Lett 579:3885–3890PubMedCrossRefGoogle Scholar
  12. 12.
    von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tissue Org Cult 69:233–249CrossRefGoogle Scholar
  13. 13.
    Zimmerman JL (1993) Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5:1411–1423PubMedCrossRefGoogle Scholar
  14. 14.
    Cerda F, Aquea F, Gebauer M, Medina C, Arce-Johnson P (2002) Stable transformation of Pinus radiata embryogenic tissue by Agrobacterium tumefaciens. Plant Cell Tissue Org Cult 70:251–257CrossRefGoogle Scholar
  15. 15.
    Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116CrossRefGoogle Scholar
  16. 16.
    Bachem CWB, van der Hoeven RS, de Bruijn SM, Vreugdenhil D, Zabeau M, Visser RGF (1996) Visualization of differential gene expression using a novel method of RNA fingerprinting based on AFLP: analysis of gene expression during potato tuber development. Plant J 9:745–753PubMedCrossRefGoogle Scholar
  17. 17.
    Blanco F, Garreton V, Frey N, Dominguez C, Perez-Acle T, Van der Straeten D, Jordana X, Holuigue L (2005) Identification of NPR1-dependent and independent genes early induced by salicylic acid treatment in Arabidopsis. Plant Mol Biol 59:927–944PubMedCrossRefGoogle Scholar
  18. 18.
    Bishop-Hurley S, Gardner RC, Walter C (2003) Isolation and molecular characterization of genes expressed during somatic embryo development in Pinus radiata. Plant Cell Tissue Org Cult 74:267–281CrossRefGoogle Scholar
  19. 19.
    Michiels A, Tucker M, Van den Ende W, Van Iaer A (2003) Chromosomal walking of flanking regions from short known sequences in GC-rich plant genomic DNA. Plant Mol Biol Rep 21:295–302CrossRefGoogle Scholar
  20. 20.
    Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Research 31:3381–3385PubMedCrossRefGoogle Scholar
  21. 21.
    Nanao MH, Tcherniuk SO, Chroboczek J, Dideberg O, Dessen A, Balakirev MY (2004) Crystal structure of human OTUBAIN 2. EMBO Rep 5:783–788PubMedCrossRefGoogle Scholar
  22. 22.
    Breyne P, Dreesen R, Cannoot B, Rombaut D, Vandepoele K, Rombauts S, Vanderhaeghen R, Inzé D, Zabeau M (2003) Quantitative cDNA-AFLP analysis for genome-wide expression studies. Mol Genet Genomics 269:173–179PubMedGoogle Scholar
  23. 23.
    Stasolla C, Bozhkov PV, Chu TZ, van Zyl L, Egertsdotter U, Suarez M, Craig D, Wolfinger RD, von Arnold S, Sederoff RR (2004) A transcriptional pathway during somatic embryogenesis in gymnosperms. Tree Physiology 24:1073–1085PubMedGoogle Scholar
  24. 24.
    Van Zyl L, Bozhkov PV, Clapham DH, Sederoff RR, von Arnold S (2003) Up, down and up again is a signature global gene expression pattern at the beginning of gymnosperm embryogenesis. Gene Expr Patterns 3:83–91PubMedCrossRefGoogle Scholar
  25. 25.
    Cairney J, Xu N, Mackay J, Pullman J (2000) Transcript profiling: a tool to assess the development of conifer embryos. In Vitro Cell Dev Biol Plant 36:155–162CrossRefGoogle Scholar
  26. 26.
    Mo S, Song P, Lv D, Chen Y, Zhou W, Gong W, Zhu Z (2005) Zebrafish z-otu, a novel Otu and Tudor domain-containing gene, is expressed in early stages of oogenesis and embryogenesis. Biochim Biophys Acta 1732:1–7PubMedGoogle Scholar
  27. 27.
    Allona I, Quinn M, Shoop I, Swope K, St Cyr S, Carlis J, Ried J, Retzel E, Campbell MM, Sederoff R, Whetten RW (1998) Analysis of xylem formation in pine by cDNA sequencing. Proc Natl Acad Sci USA 95:9693–9698PubMedCrossRefGoogle Scholar
  28. 28.
    Canton FR, Le Provost G, Garcia V, Barre A, Frigerio JM, Paiva J, Fevereiro P, Avila C, Mouret JF, de Daruvar A, Canovas FM, Plomion C (2003) Transcriptome analysis of wood formation in maritime pine. In Espinel S, Barredo Y, Ritter E (eds) Sustainable forestry, wood products and biotechnology. DFA-AFA Press, Vitoria-Gasteiz, Spain, pp 333–347Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Felipe Aquea
    • 1
  • Florencia Gutiérrez
    • 1
  • Consuelo Medina
    • 1
  • Patricio Arce-Johnson
    • 1
  1. 1.Departamento de Genética Molecular y Microbiología, Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile

Personalised recommendations