Developmental genetics of maize vegetative shoot architecture

Abstract

More than 1.1 billion tonnes of maize grain were harvested across 197 million hectares in 2019 (FAOSTAT 2020). The vast global productivity of maize is largely driven by denser planting practices, higher yield potential per area of land, and increased yield potential per plant. Shoot architecture, the three-dimensional structural arrangement of the above-ground plant body, is critical to maize grain yield and biomass. Structure of the shoot is integral to all aspects of modern agronomic practices. Here, the developmental genetics of the maize vegetative shoot is reviewed. Plant architecture is ultimately determined by meristem activity, developmental patterning, and growth. The following topics are discussed: shoot apical meristem, leaf architecture, axillary meristem and shoot branching, and intercalary meristem and stem activity. Where possible, classical and current studies in maize developmental genetics, as well as recent advances leveraged by “-omics” analyses, are highlighted within these sections.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data Availability

Not applicable

References

  1. Abbe EC, Phinney BO, Baer DF (1951) The growth of the shoot apex of maize: internal features. Am J Bot 38:744–751

    Article  Google Scholar 

  2. Altpeter F, Springer NM, Bartley LE, Blechl AE, Brutnell TP, Citovsky V, Conrad LJ, Gelvin SB, Jackson DP, Kausch AP, Lemaux PG, Medford JI, Orozco-Cádenas ML, Tricoli DM, Van Eck J, Voytas DF, Walbot V, Wang K, Zhang ZJ, Stewart CN (2016) Advancing crop transformation in the era of genome editing. Plant Cell 28:1510–1520

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Anderson A, St Aubin B, Abraham-Juarez MJ, Leiboff S, Shen Z, Briggs S, Brunkard JO, Hake S (2019) The second site modifier, Sympathy for the ligule, encodes a homolog of Arabidopsis ENHANCED DISEASE RESISTANCE4 and rescues the Liguleless narrow maize mutant. Plant Cell 31:1829–1844

  4. Atkins PAP, Voytas DF (2020) Overcoming bottlenecks in plant gene editing. Curr Opin Plant Biol 54:79–84

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. Avilla LM, Cerrudo D, Swanton C, Lukens L (2016) Brevis plant1, a putative inositol polyphosphate 5-phosphatase, is required for internode elongation in maize. J Exp Bot 67(5):1577–1588

    Article  CAS  Google Scholar 

  6. Bassiri A, Irish EE, Poethig RS (1992) Heterchronic effects of Teopod 2 on growth and photosensitivity of the maize shoot. Plant Cell 4:497–504

    PubMed  PubMed Central  Article  Google Scholar 

  7. Becraft PW, Freeling M (1991) Sectors of liguleless-1 tissue interrupt an inductive signal during maize leaf development. Plant Cell 3:801–807

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Becraft PW, Freeling M (1994) Genetic analysis of Rough sheath1 developmental mutants of maize. Genetics 136:295–311

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Becraft PW, Bongard-Pierce DK, Sylvester AW, Poethig RS, Freeling M (1990) The liguleless-1 gene acts tissue specifically in maize leaf development. Dev Biol 141:220–232

  10. Benson RJ, Johal GS, Crane VC, Tossberg JT, Schnable PS, Meeley RB, Briggs SP (1995) Cloning and characterization of the maize an1 gene. Plant Cell 7:75–84

    Google Scholar 

  11. Bertrand-Garcia R, Freeling M (1991) Hairy-sheath frayed #1-O: a systemic, heterochronic mutant of maize that specifies slow developmental stage transitions. Am J Bot 78:747–765

    Article  Google Scholar 

  12. Best NB, Hartwig T, Budka J, Fujioka S, Johal G, Schulz B, Dilkes BP (2016) nana plant2 encodes a maize ortholog of the Arabidopsis brassinosteroid biosynthesis gene DWARF1, identifying developmental interactions between brassinosteroid and gibberellins. Plant Physiol 171:2633–2647

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Bolduc N, Hake S (2009) The maize transcription factor KNOTTED1 directly regulates the gibberellin catabolism gene ga2ox1. Plant Cell 21:1647–1658

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Bolduc N, O’Connor D, Moon J, Lewis M, Hake S (2012a) How to pattern a leaf. Cold Spring Harb Symp Quant Biol 77:47–51

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. Bolduc N, Tyers RG, Freeling M, Hake S (2014) Unequal redundancy in maize knotted1 homeobox genes. Plant Physiol 164:229–238

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. Bolduc N, Yilmaz A, Mejia-Guerra MK, Morohashi K, O’Connor D, Grotewold E, Hake S (2012b) Unraveling the KNOTTED1 regulatory network in maize meristems. Genes Dev 26:1685–1690

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Bommert P, Je BI, Goldschmidt A, Jackson D (2013) The maize Gα gene COMPACT PLANT2 functions in CLAVATA signaling to control shoot meristem size. Nature 502:555–558

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. Bommert P, Lunde C, Nardmann J, Vollbrecht E, Running M, Jackson D, Hake S (2005) thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase. Development 132:1235–1245

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. Bowman JL, Smyth DR (1999) CRABS CLAW, a gene that regulates carpel and nectary development in Arabidopsis, encodes a novel protein with zinc finger and helix-loop-helix domains. Development 126:2387–2396

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Brooks L, Strable J, Zhang X, Ohtsu K, Zhou R, Sarkar A, Hargreaves S, Elshire RJ, Eudy D, Pawlowska T, Ware D, Janick-Buckner D, Buckner B, Timmermans MCP, Schnable PS, Nettleton D, Scanlon MJ (2009) Microdissection of shoot meristem functional domains. PLoS Genet 5(5):e1000476

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  21. Buescher EM, Moon J, Runkel A, Hake S, Dilkes DP (2014) Natural variation at sympathy for the ligule controls penetrance of the semidominant Liguleless narrow-R mutation in Zea mays. G3 4:2297–2306

    PubMed  Article  PubMed Central  Google Scholar 

  22. Candela H, Hake S (2008) The art and design of genetic screens: maize. Nat Rev Genet 9:192–203

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. Cao Y, Zeng H, Ku L, Ren Z, Han Y, Su H, Dou D, Liu H, Dong Y, Zhu F, Li T, Zhao Q, Chen Y (2020) ZmIBH1-1 regulates plant architecture in maize. J Exp Bot 71:2943–2955

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Cassani E, Bertolini E, Badone FC, Landoni M, Gavina D, Sirizzotti A, Pilu R (2009) Characterization of the first dominant dwarf maize mutant carring a single amino acid insertion in the VHYNP domain of the dwarf8 gene. Mol Breed 24:375–385

    CAS  Article  Google Scholar 

  25. Chen Q, Samoyoa LF, Yang CJ, Bradbury PJ, Olukolu BA, Neumeyer MA, Romay MC, Sun Q, Lorant A, Buckler ES, Ross-Ibarra J, Holland JB, Doebley JF (2020) The genetic architecture of the maize progenitor, teosinte, and how it was altered during maize domestication. PLoS Genet 16:e10088791

    Google Scholar 

  26. Chen Q, Yang CJ, York AM, Xue W, Daskalska LL, Devalk CA, Krueger KW, Lawton SB, Spiegelberg BG, Schnell J, Neumeyer MA, Perry JS, Peterson AC, Kim B, Bergstrom L, Yang L, Barber IC, Tian F, Doebley JF (2019) TeoNAM: a nested association mapping population for domestication and agronomic trait analysis in maize. Genetics 213:1065–1078

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Chen Y, Hou M, Liu L, Wu S, Shen Y, Ishiyama K, Kobayashi M, McCarty DR, Tan BC (2014) The maize dwarf1 encodes a gibberellin 3-oxidase and is dual localized to the nucleus and cytosol. Plant Physiol 166:2028–2039

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  28. Chuck G, Brown PJ, Meeley R, Hake S (2014) Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation. Proc Natl Acad Sci U S A 111:18775–18780

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Chuck G, Cigan AM, Saeteurn K, Hake S (2007) The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nat Genet 39:544–549

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. Clark NM, Van den Broeck L, Guichard M, Stager A, Tanner HG, Blilou I, Grossman G, Iyer-Pascuzzi AS, Maizel A, Sparks EE, Sozzani R (2020) Novel imaging modalities shedding light on plant biology: start small and grow big. Annu Rev Plant Biol 71:789–816

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  31. Clark RM, Wagler TN, Quijada P, Doebley J (2006) A distinct upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescence architecture. Nat Genet 38:594–597

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. Colasanti J, Muszynski MG (2009) The maize floral transition. In: Handbook of Maize: Its Biology. Springer, New York, pp 41–55

    Google Scholar 

  33. Conklin PA, Johnston R, Conlon BR, Shimizu R, Scanlon MJ (2020) Plant homeodomain proteins provide a mechanism for how leaves grow wide. Development 147:dev193623

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Crosbie T (1982) Changes in physiological traits associated with long-term breeding efforts to improve grain yield in maize. In: Loden H, Wilkinson D (eds) Proceedings of the 37th Annual Corn and Sorghum Research Conference. American Seed Trade Association, Washington, DC, pp 206–223

    Google Scholar 

  35. Cui T, He K, Chang L, Zhang X, Xue J, Liu J (2017) QTL mapping for leaf area in maize (Zea mays L.) under multi-environments. J Integr Agric 16:800–808

    Article  Google Scholar 

  36. Ding J, Zhang L, Chen J, Li X, Li Y, Cheng H, Huang R, Zhou B, Li Z, Wang J, Wu J (2015) Genomic dissection of leaf angle in maize (Zea mays L.) using a four-way cross mapping population. PLoS One 10:e0141619

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  37. Doebley J (2004) The genetics of maize evolution. Annu Rev Genet 38:37–59

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. Doebley J, Stec A (1991) Genetic analysis of the morphological differences between maize and teosinte. Genetics 129:285–295

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  39. Doebley J, Stec A, Gustus C (1995) teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance. Genetics 141:333–346

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Doebely J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386:485–488

    Article  Google Scholar 

  41. Doebley J, Stec A, Wendel J, Edwards M (1990) Genetic and morphological analysis of a maize-teosinte F2 populations: implications for the origin of maize. Proc Natl Acad Sci U S A 87:9888–9892

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Domagalska MA, Leyser O (2011) Signal integration in the control of shoot branching. Nat Rev Mol Biol 12:211–221

    CAS  Article  Google Scholar 

  43. Dong Z, Alexander M, Chuck G (2019a) Understanding grass domestication through maize mutants. Trends Genet 35:118–128

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. Dong Z, Jiang C, Chen X, Zhang T, Ding L, Song W, Luo H, Lai J, Chen H, Liu R, Zhang X, Jin W (2013) Maize LAZY1 mediates shoot gravitropism and inflorescence development through regulating auxin transport, auxin signaling, and light response. Plant Physiol 163:1306–1322

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Dong Z, Li W, Unger-Wallace E, Yang J, Vollbrecht E, Chuck G (2017) Ideal crop plant architecture is mediated by tassels replace upper ears1, a BTB/POZ ankyrin repeat gene directly targeted by TEOSINTE BRANCHED1. Proc Natl Acad Sci U S A 114:E8656–E8664

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Dong Z, Xiao Y, Govindarajulu R, Feil R, Siddoway ML, Nielsen T, Lunn JE, Hawkins J, Whipple C, Chuck G (2019b) The regulatory landscape of a core maize domestication module controlling bud dormancy and growth repression. Nat Commun 10:1–15

    Article  CAS  Google Scholar 

  47. Douglas RN, Wiley D, Sarkar A, Springer N, Timmermans MCP, Scanlon MJ (2010) ragged seedling2 encodes and ARGONAUTE7-like protein required for mediolateral expansion, but not dorsiventrality, of maize leaves. Plant Cell 22:1441–1451

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Dubois M, Van den Broeck L, Inzé D (2018) The pivotal role of ethylene in plant growth. Trends Plant Sci 23:311–323

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Dubois PG, Brutnell TP (2009) Light signal transduction networks in maize. In: Handbook of Maize: Its Biology. Springer, N.Y. pp, pp 205–227

    Google Scholar 

  50. Duncan WG (1971) Leaf angle, leaf area, and canopy photosynthesis. Crop Sci 11:482–485

    Article  Google Scholar 

  51. Durbak AR, Phillips KA, Pike S, O’Neill MA, Mares J, Gallavotti A, Malcomber ST, Gassmann W, McSteen P (2014) Transport of boron by the tassel-less1 aquaporin is critical for vegetative and reproductive development in maize. Plant Cell 26:2978–2995

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Duvick DN (2005) Genetic progress in yield of United States maize (Zea mays L.). Maydica 50:193–202

    Google Scholar 

  53. Dzievit MJ, Li X, Yu J (2018) Dissection of leaf angle variation in maize through genetic mapping and meta-analysis. Plant Genome 12:180024

    Article  CAS  Google Scholar 

  54. Efroni I, Birnbaum KD (2016) The potential of single-cell profiling in plants. Genome Biol 17:65

    PubMed  PubMed Central  Article  Google Scholar 

  55. Emerson RA (1912a) The inheritance of the ligule and auricle of corn leaves. Neb Agric Exp Sta An Rep 25:81–85

    Google Scholar 

  56. Emerson RA (1912b) The inheritance of certain abnormalities in maize. Am Breeders Assoc Rep 8:385–399

    Google Scholar 

  57. Emerson RA, Emerson SE (1922) Genetic interrelations of two andromonecious types of maize, dwarf and anther ear. Genetics 7:203–227

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Esau K (1965) Plant Anatomy, 2nd edn. Wiley, New York

    Google Scholar 

  59. Evans MMS, Poethig RS (1997) The viviparous8 mutation delays vegetative phase change and accelerates the rate of seedling growth in maize. Plant J 12:769–779

    Article  Google Scholar 

  60. Flint-Garcia SA, Thuillet AC, Yu J, Pressoir G, Romero SM, Mithcell SE, Doebley J, Kresovich S, Goodman MM, Buckler ES (2005) Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J 44:1054–1064

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. FAOSTAT (2020). Food and Agricultural Organization of the United Nations Agriculture Databases (FAOSTAT, December 22, 2020); http://www.fao.org/faostat/en/#data/QC

  62. Foster T, Hay A, Johnston R, Hake S (2004) The establishment of axial patterning in the maize leaf. Development 131:3921–3929

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  63. Foster T, Yamaguchi J, Wong BC, Veit B, Hake S (1999) Gnarley1 is a dominant mutation in the knox4 homeobox gene affecting cell shape and identity. Plant Cell 11:1239–1252

  64. Foster TM, Timmermans MCP (2009) Axial patterning of the maize leaf. In: Handbook of Maize: Its Biology. Springer, New York, pp 161–178

    Google Scholar 

  65. Fowler JE, Freeling M (1996) Genetic analysis of mutations that alter cell fates in maize leaves: dominant Liguleless mutations. Dev Genet 18:198–222

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  66. Fowler JE, Muehlbauer GJ, Freeling M (1996) Mosaic analysis of Liguleless3 mutant phenotype in maize by coordinate suppression of Mutator-insertion alleles. Genetics 143:489–503

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. Franco JAV, Gage JL, Bradbury PJ, Johnson LC, Miller ZR, Buckler ES, Romay MC (2020) A maize practical haplotype graph leverages diverse NAM assemblies. In: bioRxiv. https://doi.org/10.1101/2020.08.31.268425

    Google Scholar 

  68. Freeling M, Hake S (1985) Developmental genetics of mutants that specify knotted leaves in maize. Genetics 111:617–634

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. Fu J, Ren F, Lu X, Mao H, Xu M, Degenhardt J, Peters RJ, Wang Q (2016) A tandem array of ent-kaurene synthases in maize with roles in gibberellin and more specialized metabolism. Plant Physiol 170:742–751

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. Fu Y, Xu G, Chen H, Wang X, Chen Q, Huang C, Li D, Xu D, Tian J, Wu W, Lu S, Li C, Tian F (2019) QTL mapping for leaf morphology traits in a large maize-teosinte population. Mol Breed 39:103

    CAS  Article  Google Scholar 

  71. Fujioka S, Yamane H, Spray CR, Gaskin P, Macmillan J, Phinney BO, Takahashi (1988) Qualitative and quantitative analyses of gibberellins in vegetative shoots of normal, dwarf-1, dwarf-2, dwarf-3, and dwarf-5 seedlings of Zea mays L. Plant Physiol 88:1367–1372

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. Gage JL, Monier B, Giri A, Buckler ES (2020) Ten years of the maize nested association mapping population: Impact, limitations, and future directions. Plant Cell 32:2083–2093

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. Gage JL, Richards E, Lepak N, Kaczmar N, Soman C, Chowdhary G, Gore MA, Buckler ES (2019) In-field whole-plant maize architecture characterized by subcanopy rovers and latent space phenotyping. Plant Phe J 2:1–21

    Article  Google Scholar 

  74. Galinat W (1959) The phytomer in relation to the floral homologies in the American Maydea. Bot Mus Lealf Harv Univ 19:1–32

    Google Scholar 

  75. Gallavotti A, Barazesh S, Malcomber S, Hall D, Jackson D, Schmidt RJ, McSteen P (2008) sparse infloresence1 encodes a monocot-specific YUCCA-like gene required for vegetative and reproductive development in maize. Proc Natl Acad Sci U S A 105:15196–15201

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. Gallavotti A, Malcomber S, Gaines C, Stanfield S, Whipple C, Kellogg E, Schmidt RJ (2011) BARREN STALK FASTIGIATE1 is an AT-hook protein required for the formation of maize ears. Plant Cell 23:1756–1771

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. Gallavotti A, Zhao Q, Kyozuka J, Meeley RB, Ritter MK, Doebley JF, Pé ME, Schmidt RJ (2004) The role of barren stalk1 in the architecture of maize. Nature 432:630–635

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. Gao H, Mutti J, Young JK, Yang M, Schroder M, Lenderts B, Wang L, Peterson D, St. Clair G, Jones S, Feigenbutz L, Marsh W, Zeng M, Wagner S, Farrell J, Snopek K, Scelonge C, Sopko X, Sander JD, Betts S, Cigan AM, Chilcoat ND (2020) Complex trait loci in maize enabled by CRISPR-Cas9 mediated gene insertion. Front Plant Sci 11:535

    PubMed  PubMed Central  Article  Google Scholar 

  79. Giulini A, Wang J, Jackson D (2004) Control of phyllotaxy by the cytokinin inducible response regulator homologue ABPHYL1. Nature 430:1031–1034

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  80. Guan JC, Koch KE, Suzuki M, Wu S, Latshaw S, Petruff T, Goulet C, Klee HJ, McCarty DR (2012) Diverse roles of strigolactone signaling in maize architecture and the uncoupling of a branching-specific subnetwork. Plant Physiol 160:1303–1317

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. Guo M, Rupe MA, Wei J, Winkler C, Goncalves-Butruille M, Weers BP, Cerwick SF, Dieter JA, Duncan KE, Howard RJ, Hou Z, Löffler CM, Cooper M, Simmons CR (2013) Maize ARGOS1 (ZAR1) transgenic alleles increase hybrid maize yield. J Exp Bot 65:249–260

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  82. Guo X, Qiu Y, Nettleton D, Yeh CT, Zheng Z, Hey S, Schnable PS (2020) Automatic traits extraction and fitting for field high-throughput phenotyping systems. In: bioRxiv. https://doi.org/10.1101/2020.09.09.289769

    Google Scholar 

  83. Hake S, Vollbrecht E, Freeling M (1989) Cloning Knotted, the dominant morphological mutant in maize using Ds2 as a transposon tag. EMBO J 8:15–22

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. Hallauer AR (1974) Heritability of prolificacy in maize. J Hered 65:163–168

    Article  Google Scholar 

  85. Harper L, Freeling M (1996) Interactions of liguleless1 and liguleless2 function during ligule induction in maize. Genetics 144:1871–1882

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. Hartwig T, Chuck GS, Fujioka S, Klempien A, Weizbauer R, Potluri DPV, Choe S, Johal GS, Schulz B (2011) Brassinosteroid control of sex determination in maize. Proc Natl Acad Sci U S A 108:19814–19819

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. Hay A, Hake S (2004) The dominant mutant Wavy auricle in blade1 disrupts patterning in a lateral domain of the maize leaf. Plant Physiol 135:300–308

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. Hedden P (2003) The genes of the Green Revolution. Trends Genet 19:5–9

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  89. Hepworth SR, Pautot VA (2015) Beyond the divide: boundaries for patterning and stem cell regulation in plants. Front Plant Sci 6:1052

    PubMed  PubMed Central  Article  Google Scholar 

  90. Hepworth SR, Zhang Y, McKim S, Li X, Haughn GW (2005) BLADE-ON-PETIOLE-dependent signaling controls leaf and floral patterning in Arabidopsis. Plant Cell 17:1434–1448

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. Howard TP, Hayward AP, Tordillos A, Fragoso C, Moreno MA, Tohme J, Kausch AP, Mottinger JP, Dellaporta SL (2014) Identification of the maize gravitropism gene lazy plant1 by transposon-tagging genome resequencing strategy. PLoS One 9:e87053

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  92. Hufford MB, Seetharam AS, Woodhouse MR, Chougule KM, Ou S, Liu J, Ricci WA, Guo T, Olson A, Qiu Y, Della Coletta R, Tittes S, Hudson AI, Marand AP, Wei S, Lu Z, Wang B, Tello-Ruiz MK, Piri RD, Wang N, won Kim D, Zeng Y, O’Connor CH, Li X, Gilbert AN, Baggs E, Krasileva KV, Portwood JL, Cannon EKS, Andorf CM, Manchanda N, Snodgrass SJ, Hufnagel DE, Jiang Q, Pedersen S, Syring ML, Kudrna DA, Llaca V, Fengler K, Schmitz RJ, Ross-Ibarra J, Yu J, Gent JI, Hirsch CN, Ware D, Dawe RK (2021) De novo assembly, annotation, and comparative analysis of 26 diverse maize genomes. bioRxiv. https://doi.org/10.1101/2021.01.14.426684

  93. Hughes TE, Sedelnikova OV, Wu H, Becraft PW, Langdale JA (2019) Redundant SCARECROW genes pattern distinct cell layers in roots and leaves of maize. Development 146:e177543

    Article  CAS  Google Scholar 

  94. Hunter CT, Kirienko DH, Sylvester AW, Peter GF, McCarty DR, Koch KE (2012) Cellulose synthase-like D1 is integral to normal cell division, expansion and leaf development in maize. Plant Physiol 158:708–724

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  95. Iltis HH (1983) From teosinte to maize: the catastrophic sexual transmutation. Science 222:886–894

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  96. Irish EE, Jegla D (1997) Regulation of extent of vegetative development of the maize shoot meristem. Plant J 11:63–71

    Article  Google Scholar 

  97. Irish EE, Karlen S (1998) Restoration of juvenility in maize shoots by meristem culture. Int J Plant Sci 159:695–701

    Article  Google Scholar 

  98. Irish EE, Nelson T (1991) Identification of multiple stages in the conversion of vegetative to floral development. Development 112:891–898

    Google Scholar 

  99. Jackson D (2002) Double labeling of KNOTTED1 mRNA and protein reveals multiple potential sites of protein trafficking in the shoot apex. Plant Physiol 129:1423–1429

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. Jackson D (2009) Vegetative shoot meristems. In: Handbook of Maize: Its Biology. Springer, New York, pp 1–12

    Google Scholar 

  101. Jackson D, Hake S (1999) Control of phyllotaxy in maize by the abphy1 gene. Development 126:315–323

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Jackson D, Veit B, Hake S (1994) Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120:405–413

    CAS  Google Scholar 

  103. Je BI, Gruel J, Lee YK, Bommert P, Demesa-Arevalo E, Eveland AL, Wu Q, Goldshmidt A, Meeley R, Bartlett M, Komatsu M, Sakai H, Jönsson H, Jackson D (2016) Signaling from maize primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits. Nat Genet 48:785–791

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  104. Je BI, Xu F, Wu Q, Liu L, Meeley R, Gallagher JP, Corcilius L, Payne RJ, Bartlett ME, Jackson D (2018) The CLAVATA receptor FASCIATED EAR2 responds to distinct CLE peptides by signaling through two downstream effectors. Elife 7:e35673

    PubMed  PubMed Central  Article  Google Scholar 

  105. Jenkins MT, Gerhardt F (1931) A gene influencing the composition of the culm in maize. Iowa Agric Exp Stn Res Bull 138:121–151

    Google Scholar 

  106. Jiang F, Guo M, Yang F, Duncan K, Jackson D, Rafalski A, Wang S, Li B (2012) Mutations in an AP2 transcription factor-like gene affect internode length and leaf shape in maize. PLoS One 7(5):e37040

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. Johnston R, Leiboff S, Scanlon MJ (2015) Ontogeny of the sheathing leaf base in maize (Zea mays). New Phytol 205:306–315

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  108. Johnston R, Wang M, Sun Q, Sylvester AW, Hake S, Scanlon MJ (2014) Transcriptomic analyses indicate that maize ligule development recapitulates gene expression patterns that occur during lateral organ initiation. Plant Cell 26:4718–4732

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. Jorhi MM, Coe EH (1983) Clonal analysis of corn plant development. I. The development of the tassel and the ear. Dev Biol 97:154–172

    Article  Google Scholar 

  110. Kafri R, Springer M, Pilpel Y (2009) Genetic redundancy: new tricks for old genes. Cell 136:389–392

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  111. Kaush AP, Nelson-Vasilchik K, Hague J, Mookkan M, Quemada H, Dellaporta S, Fragoso C, Zhang ZJ (2019) Edit at will: genotype independent plant transformation in the ear of advanced genomics and genome editing. Plant Sci 281:186–205

    Article  CAS  Google Scholar 

  112. Kebrom TH, Burson BL, Finlayson SA (2006) Phytochrome B represses teosinte branched1 expression and induces sorghum axillary bud outgrowth in response to light signals. Plant Physiol 140:1109–1117

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. Kelliher T, Starr D, Su X, Tang G, Chen Z, Carter J, Wittich PE, Dong S, Green J, Burch E, McCuiston J, Gu W, Sun Y, Strebe T, Robers J, Bate NJ, Que Q (2019) One-step genome editing of elite crop germplasm during haploid induction. Nat Biotechnol 37:287–292. https://doi.org/10.1038/s41587-019-0038-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  114. Kerstetter RA, Laudencia-Chingcuanco D, Smith LG, Hake S (1997) Loss-of-function mutations in the maize homeobox gene, knotted1, are defective in shoot meristem maintenance. Development 124:3045–3054

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Kiesselbach T (1949) The Structure and Reproduction of Corn. University of Nebraska College of Agriculture, Lincoln, NE

    Google Scholar 

  116. Kim JH, Tsukaya H (2015) Regulation of plant growth and development by the GROWTH-REGULATING FACTOR and GRF-INTERACTING FACTOR duo. J Exp Bot 66:6093–6107

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  117. Kim JY, Yuan Z, Cilia M, Khalfan-Jagani Z, Jackson D (2002) Intercellular trafficking of a KNOTTED1 green fluorescent protein fusion in the leaf and shoot meristem of Arabidopsis. Proc Natl Acad Sci U S A 99:4103–4108

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. Kir G, Ye H, Nelissen H, Neelakandan AK, Kusnandar AS, Luo A, Inzé D, Sylvester AW, Yin Y, Becraft PW (2015) RNA interference knockdown of BRASSINOSTEROID INSENSITIVE1 in maize reveals novel functions for brassinosteroid signaling in controlling plant architecture. Plant Physiol 169:826–839

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. Klesen S, Hill K, Timmermans MCP (2020) Small RNAs as plant morphogens. Curr Opin Dev Biol 137:455–480

    Article  Google Scholar 

  120. Knauer S, Javelle M, Li L, Li X, Ma X, Wimalanathan K, Kumari S, Johnston R, Leiboff S, Meeley R, Schnable PS, Ware D, Lawrence-Dill C, Yu J, Muehlbauer GJ, Scanlon MJ, Timmermans MCP (2019) A high-resolution gene expression atlas links dedicated meristems genes to key architectural traits. Genome Res 29:1962–1973

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. Knöller AS, Blakeslee JJ, Richards EL, Peer WA, Murphy AS (2010) Bracytic2/ZmABCB1 functions in IAA export from intercalary meristems. J Exp Bot 61:3689–3696

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  122. Kolkman JM, Strable J, Harline K, Kroon DE, Wiesner-Hanks T, Bradbury PJ, Nelson RJ (2020) Maize introgression library provides evidence for the involvement of liguleless1 in resistance to Northern Leaf Blight. G3 10:3611–3622. https://doi.org/10.1534/g3.120.401500

    Article  PubMed  PubMed Central  Google Scholar 

  123. Kong F, Zhang T, Liu J, Heng S, Shi Q, Zhang H, Wang Z, Ge L, Li P, Lu X, Li G (2017) Regulation of leaf angle by auricle development in maize. Mol Plant 10:516–519

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  124. Kremling KAG, Chen SY, Su MH, Lepak NK, Romay MC, Swarts KL, Lu F, Lorant A, Bradbury PJ, Buckler ES (2018) Dysregulation of expression correlates with rare-allele burden and fitness loss in maize. Nature 555:520–523

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  125. Ku L, Cao L, Wei X, Su H, Tian Z, Guo S, Zhang L, Ren Z, Wang X, Zhu Y, Li G, Wang Z, Chen Y (2015) Genetic dissection of internode length above the uppermost ear in four RIL populations of maize (Zea mays L.). G3 5:281–289

  126. Ku L, Zhang J, Zhang JC, Guo S, Liu H, Zhao R, Yan Q, Chen Y (2012a) Genetic dissection of leaf area by jointing two F2:3 populations in maize (Zea mays L.). Plant Breed 131:591–599

    CAS  Article  Google Scholar 

  127. Ku LX, Zhang J, Guo SL, Liu HY, Zhan RF, Chen YH (2012b) Integrated multiple population analysis of leaf architecture traits in maize (Zea mays L.). J Exp Bot 63:261–274

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  128. Ku LX, Zhao WM, Zhang J, Wu LC, Wang CL, Wang PA, Zhang WQ, Chen YH (2010) Quantitative trait loci mapping of leaf angle and leaf orientation value in maize (Zea mays L.). Theor Appl Genet 121:951–959

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  129. Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J (2007) Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445:652–655

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  130. Lambert RJ, Johnston RR (1978) Leaf angle, tassel morphology, and the performance of maize hybrids. Crop Sci 18:499–502

    Article  Google Scholar 

  131. Lamoreaux RJ, Chaney WR, Brown KM (1978) The plastochron index: a review after two decades of use. Am J Bot 65:586–593

    Article  Google Scholar 

  132. Lawitt SJ, Wych HM, Xu D, Kundu S, Tomes DT (2010) Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development. Plant Cell Physiol 51:1854–1868

    Article  CAS  Google Scholar 

  133. Ledin R (1954) The vegetative shoot apex of Zea mays. Am J Bot 41:11–17

    Article  Google Scholar 

  134. Lee EA, Tollenaar M (2007) Physiological basis of successful breeding strategies for maize grain yield. Crop Sci 47:S-202–S-215

    Article  Google Scholar 

  135. Leiboff S, Li X, Hu HC, Todt N, Yang J, Li X, Yu X, Muehlbauer GJ, Timmermans MCP, Yu J, Schnable PS, Scanlon MJ (2015) Genetic control of morphometric diversity in the maize shoot apical meristem. Nat Commun 6:8974

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  136. Leiboff S, Strable J, Johnston R, Federici S, Sylvester AW, Scanlon MJ (2020) Network analyses identify a transcriptomic proximodistal prepattern in the maize leaf primordium. New Phytol. https://doi.org/10.1111/nph.171132

  137. Lewis MW, Bolduc N, Hake K, Htike Y, Hay A, Candela H, Hake S (2014) Gene regulatory interactions at lateral organ boundaries in maize. Development 141:4590–4597

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  138. Leydon AR, Gala HP, Guiziou S, Nemhauser JL (2020) Engineering synthetic signaling in plants. Annu Rev Plant Biol 71:767–788

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  139. Li C, Li Y, Shi Y, Song Y, Zhang D, Buckler ES, Zhang Z, Wang T, Li Y (2015) Genetic control of the leaf angle and leaf orientation value as revealed by ultra-high density maps in three connected maize populations. PLoS One 10:e0121624

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  140. Li C, Liu C, Qi X, Wu Y, Fei X, Mao L, Cheng B, Li X, Xie C (2017) RNA-guided Cas9 as an in vivo desired-target mutator in maize. Plant Biotechnol J 15:1566–1576

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  141. Li C, Tang J, Hu Z, Wang J, Yu T, Yi H, Cao M (2020b) A novel maize dwarf mutant generated by Ty1-copia LTR-retrotransposon insertion in Brachytic2 after spaceflight. Plant Cell Rep 39:393–408

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  142. Li D, Wang X, Zhang X, Chen Q, Xu G, Xu D, Wang C, Liang Y, Wu L, Huang C, Tian J, Wu Y, Tian F (2016) The genetic architecture of leaf number and its genetic relationship to flowering time in maize. New Phytol 210:256–268

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  143. Li H, Wang L, Liu M, Dong Z, Li Q, Fei S, Xiang H, Liu B, Jin W (2020a) Maize plant architecture is regulated by the ethylene biosynthetic gene ZmACS7. Plant Physiol 183:1184–1199

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  144. Li W, Yang Z, Yao J, Li J, Song W, Yang X (2018) Cellulose synthase-like D1 controls organ size in maize. BMC Plant Biol 18:239

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  145. Liable CA, Dirks VA (1968) Genetic variance and selection value of ear number of corn (Zea mays L.). Crop Sci 8:540–543

    Article  Google Scholar 

  146. Libault M, Pingault L, Zogli P, Schiefelbein J (2017) Plant systems biology at the single-cell level. Trends Plant Sci 22:949–960

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  147. Liu HJ, Jian L, Xu J, Zhang Q, Zhang M, Jin M, Peng Y, Yan J, Han B, Liu J, Gao F, Liu X, Huang L, Wei W, Ding Y, Yan g X, Li Z, Zhang M, Sun J, Bai M, Song W, Chen H, Sun X, Li W, Lu Y, Liu Y, Zhao J, Qian Y, Jackson D, Fernie AR, Yan J (2020) High-throughput CRISPR/Cas9 mutagenesis streamlines trait gene identification in maize. Plant Cell 32:1397–1413

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  148. Liu L, Huang J, Ne L, Liu N, Du Y, Hou R, Du H, Qiu F, Zhang Z (2019a) Dissecting the genetic architecture of important traits that enhance wild germplasm resource usage in modern maize breeding. Mol Breed 39:157

    CAS  Article  Google Scholar 

  149. Liu X, Galli M, Camehl I, Gallavotti A (2019b) RAMOSA1 ENHANCER LOCUS2-mediated transcriptional repression regulates vegetative and reproductive architecture. Plant Physiol 179:348–363

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  150. Lowe K, La Rota M, Hoerster G, Hastings C, Wang N, Chamberlin M, Wu E, Jones T, Gordon-Kamm W (2018) Rapid genotype “independent” Zea mays L. (maize) transformation via direct somatic embryogenesis. In Vitro Cellular Dev Biol – Plant 54:240–252

    CAS  Article  Google Scholar 

  151. Lowe K, Wu E, Wang N, Hoerster G, Hastings C, Cho MJ, Scelonge C, Lenderts B, Chamberlain M, Cushatt J, Wang L, Ryan L, Khan T, Chow-Yiu J, Hua W, Yu M, Banh J, Bao Z, Brink K, Igo E, Rudrappa B, Shamseer PM, Bruce W, Newman L, Shen B, Zheng P, Bidney D, Falco C, Register J, Zhao ZY, Xu D, Jones T, Kamm-Gordon W (2016) Morphogenic regulators Baby boom and Wuschel improve monocot transformation. Plant Cell 28:1998–2015

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  152. Lucas WJ, Bouché-Pillon S, Jackson DP, Nguyen L, Baker L, Ding B, Hake S (1995) Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science 270:1980–1983

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  153. Lunde C, Hake S (2009) The interaction of knotted1 and thick tassel dwarf1 in vegetative and reproductive meristems of maize. Genetics 181:1693–1697

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  154. Ma DL, Xie RZ, Niu XK, Li SK, Long HL, Liu YE (2014) Changes in the morphological traits of maize genotypes in China between the 1950s and 2000s. Eur J Agron 58:1–10

    Article  Google Scholar 

  155. Makarevitch I, Thompson A, Muehlbauer GJ, Springer NM (2012) Brd1 gene in maize encodes a brassinosteroid C-6 oxidase. PLoS One 7:e30798

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  156. Marjeran W, Friso G, Ponnala L, Connolly B, Huang M, Reidel E, Zhang C, Asakura Y, Bhuiyan NH, Sun Q, Turgeon R, van Wijk KJ (2010) Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize. Plant Cell 22:3509–3542

    Article  CAS  Google Scholar 

  157. Matsuoka Y, Vigouroux Y, Goodman MM, Sanchez J, Buckler E, Doebley J (2002) A single domestication for maize shown by multilocus microsatellite genotyping. Proc Natl Acad Sci U S A 99:6080–6084

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  158. McDaniel CN, Poethig RS (1988) Cell lineage patterns in the shoot apical meristem of the germinating maize embryo. Planta 175:13–22

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  159. McSteen P, Malcomber S, Skirpan A, Lunde C, Wu X, Kellogg E, Hake S (2007) barren inflorescence2 encodes a co-ortholog of the PINOID serine/threonine kinase and is required for organogenesis during inflorescence and vegetative development in maize. Plant Physiol 144:1000–1011

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  160. Meng X, Muszynski MG, Danilevskaya ON (2011) The FT-like ZCN8 gene functions as a floral activation and is involved in photoperiod sensitivity in maize. Plant Cell 23:942–960

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  161. Mickelson SM, Stuber CS, Senior L, Kaeppler SM (2002) Quantitative trait loci controlling leaf and tassel traits in a B73 x Mo17 population of maize. Crop Sci 42:1902–1909

    CAS  Article  Google Scholar 

  162. Milla R, Matesanz S (2017) Growing larger with domestication: a matter of physiology, morphology or allocation? Plant Biol 19:475–483

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  163. Moon J, Candela H, Hake S (2013) The Liguleless narrow mutation affects proximal-distal signaling and leaf growth. Development 140:405–412

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  164. Moreno MA, Harper LC, Krueger RW, Dellaporta SL, Freeling M (1997) liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize leaf organogenesis. Genes Dev 11:616–628

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  165. Morrison TA, Kessler JR, Buxton DR (1994) Maize internode elongation patterns. Crop Sci 34:1055–1060

    Article  Google Scholar 

  166. Muehlbauer GJ, Fowler JE, Girard L, Tyers R, Harper L, Freeling M (1999) Ectopic expression of the maize homeobox gene liguleless3 alters cell fates in the maize leaf. Plant Physiol 119:651–662

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  167. Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS (2003) Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302:81–84

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  168. Muszynski MG, Moss-Taylor L, Chudalayandi S, Cahill J, Del Valle-Echevarria AR, Alvarez-Castro I, Petefish A, Sakakibara H, Krivosheev DM, Lomin SN, Romanov GA, Thamotharan S, Dam T, Li B, Brugiére (2020) The maize Hairy sheath frayed1 (Hsf1) mutation alters leaf patterning through increased cytokinin signaling. Plant Cell 32:1501–1518

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  169. Nannas NJ, Dawe RK (2015) Genetic and genomic toolbox of Zea mays. Genetics 199:655–669

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  170. Nardmann J, Werr W (2006) The shoot stem cell niche in angiosperms: expression patterns of WUS orthologues in rice and maize imply major modifications in the course of mono- and dicot evolution. Mol Biol Evol 23:2492–2504

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  171. Nardmann J, Werr W (2009) Patterning of the maize embryo and the perspective of evolutionary developmental biology. In: Handbook of Maize: Its Biology. Springer, New York, pp 105–119

    Google Scholar 

  172. Nardmann J, Ji J, Werr W, Scanlon MJ (2004) The maize duplicate genes narrow sheath1 and narrow sheath2 encode a conserved homeobox gene function in a lateral domain of shoot apical meristems. Development 131:2827–2839

  173. Nelissen H, Eeckhout D, Demuynck K, Persiau G, Walton A, van Bel M, Vervoort M, Canadese J, De Block J, Aesaert S, Van Lijsebettens M, Goormachtig S, Vandepoele K, Van Leene J, Muszynski M, Gevaert K, Inzé D, De Jaeger G (2015) Dynamic changes in ANGUSTIFOLIA3 complex composition reveal a growth regulatory mechanism in the maize leaf. Plant Cell 27:1605–1619

  174. Nelms B, Walbot V (2019) Defining the developmental program leading to meiosis in maize. Science 364:52–56

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  175. Neuffer MG, Coe EH, Wessler SR (1997) Mutants of Maize, 2nd edn. Cold Spring Harbor Laboratory Press, Plainview

    Google Scholar 

  176. Pan Q, Xu Y, Li K, Peng Y, Zhan W, Li W, Li L, Yan J (2017) The genetic basis of plant architecture in 10 maize recombinant inbred line populations. Plant Physiol 175:858–873

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  177. Pauli D, Chapman SC, Bart R, Topp CN, Lawrence-Dill CJ, Poland J, Gore MA (2016) The quest for understanding phenotypic variation via integrated approaches in the field environment. Plant Physiol 172:622–634

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Pautler M, Eveland AL, LaRue T, Yang F, Weeks R, Je BI, Meeley R, Komatsu M, Vollbrecht E, Sakai H, Jackson D (2015) FASCIATED EAR4 encodes a bZIP transcription factor that regulates shoot meristem size in maize. Plant Cell 27:104–120

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  179. Peiffer JA, Flint-Garcia S, de Leon N, McMullen M, Kaeppler SM, Buckler ES (2013) The genetic architecture of maize stalk strength. PLoS One 8:e67066

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  180. Peiffer JA, Romay MC, Gore MA, Flint-Garcia SA, Zhang Z, Millard MJ, Gardner CA, McMullen M, Holland JB, Bradbury JP, Buckler ES (2014) The genetic architecture of maize height. Genetics 196:1337–1356

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  181. Pendleton JW, Smith GE, Winter SR, Johnston TJ (1968) Field investigations of the relationships of leaf angle in corn (Zea mays L.) to grain yield and apparent photosynthesis. Agron J 60:422–424

    Article  Google Scholar 

  182. Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ‘Green Revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  183. Pepper GE, Pearce RB, Mock JJ (1977) Leaf orientation and yield of maize. Crop Sci 17:883–886

    Article  Google Scholar 

  184. Petsch K, Manzotti PS, Tam OT, Meeley R, Hammell M, Consonni G, Timmermans MCP (2015) Novel DICER-LIKE1 siRNAs bypass the requirement for DICER-LIKE4 in maize development. Plant Cell 27:2163–2177

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  185. Phinney BO, Spray CR (1982) Biochemical genetics and the gibberellin biosynthetic pathway in Zea mays L. In: Plant growth substances 1982. Academic Press, London, pp 101–110

    Google Scholar 

  186. Pilu R, Cassani E, Villa D, Curiale S, Panzeri D, Badone FC, Landoni M (2007) Isolation and characterization of a new mutant allele of brachytic 2 maize gene. Mol Breed 20:83–91

    CAS  Article  Google Scholar 

  187. Piperno DR, Ranere AJ, Holst I, Iriarte J, Dickau R (2009) Starch grain and phytolith evidence for early ninth millennium B.P. maize from the Central Balsas River Valley, Mexico. Proc Natl Acad Sci U S A 106:5019–5024

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  188. Poethig RS (1984) Cellular parameters of leaf development in maize and tobacco. In: Contemporary Problems in Plant Anatomy. Academic Press, Cambridge

    Google Scholar 

  189. Poethig RS (1987) Clonal analysis of cell lineage patterns in plant development. Am J Bot 74:581–594

    Article  Google Scholar 

  190. Poethig RS (2003) Phase change and the regulation of developmental timing in plants. Science 301:334–336

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  191. Poethig RS, Coe EH, Johri MM (1986) Cell linage patterns in maize embryogenesis: a clonal analysis. Dev Biol 117:392–404

    Article  Google Scholar 

  192. Poethig RS, Szymkowiak EJ (1995) Clonal analysis of leaf development in maize. Maydica 40:67–76

    Google Scholar 

  193. Qiao P, Lin M, Vasquez M, Matschi S, Chamness J, Baseggio M, Smith LG, Sabuncu MR, Gore MA, Scanlon MJ (2019) Machine learning enables high-throughput phenotyping for analyses of the genetic architecture of bulliform cell patterning in maize. G3 9:4235–4243

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  194. Ramirez J, Bolduc N, Lisch D, Hake S (2009) Distal expression of knotted1 in maize leaves leads to reestablishment of proximal/distal patterning and leaf dissection. Plant Physiol 151:1878–1888

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  195. Randolph LF (1936) Developmental morphology of the caryopsis in maize. J Agric Res 53:881–917

    Google Scholar 

  196. Reinhardt D, Kuhlemeier C (2002) Plant architecture. EMBO Rep 3:846–851

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  197. Ren Z, Wu L, Ku L, Wang H, Zeng H, Su H, Wei L, Dou D, Liu H, Cao Y, Zhang D, Han S, Chen Y (2020) ZmILI1 regulates leaf angle by directly affecting liguleless1 expression in maize. Plant Biotechnol J 18:881–883

    PubMed  Article  PubMed Central  Google Scholar 

  198. Ricci WA, Lu Z, Ji L, Marand AP, Ethridge CL, Murphy NG, Noshay JM, Galli M, Mejía-Guerrra MK, Colomé-Tatché M, Johannes F, Rowley MJ, Corces VG, Zhai J, Scanlon MJ, Buckler ES, Gallavotti A, Springer NM, Schmitz RJ, Zhang X (2019) Widespread long-range cis-regulatory elements in the maize genome. Nat Plants 5:1237–1249

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  199. Richardson AE, Hake S (2019) Drawing a line: grasses and boundaries. Plants 8:4

    CAS  Article  Google Scholar 

  200. Ritter MW, Padilla CM, Schmidt RJ (2002) The maize mutant barren stalk1 is defective in axillary meristem development. Am J Bot 89:203–210

    PubMed  Article  PubMed Central  Google Scholar 

  201. Rodriguez RE, Mecchia MA, Debernardi JM, Schommer C, Weigel D, Palatnik JF (2010) Control of cell proliferation in Arabidopsis thaliana by microRNA miR396. Development 137:103–112

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  202. Rodriguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB (2017) Engineering quantitative trait variation for crop improvement by genome editing. Cell 171:470–480e8

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  203. Rodriguez-Leal D, Xu C, Kwon CT, Soyars C, Demesa-Arevalo E, Man J, Liu L, Lemmon ZH, Jones DS, Van Eck J, Jackson DP, Bartlett ME, Nimchuk ZL, Lippman ZB (2019) Evolution of buffering in a genetic circuit controlling plant stem cell proliferation. Nat Genet 51:786–792

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  204. Romay MC, Millard MJ, Glaubitz JC, Peiffer JA, Swarts KL, Casstevents TM, Elshire RJ, Acharya CB, Mitchell SE, Flint-Garcia SA, McMullen MD, Holland JB, Buckler ES, Gardner CA (2013) Comprehensive genotyping of the USA national maize inbred seed bank. Genome Biol 14:R55

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  205. Rosa M, Abraham-Juarez MJ, Lewis MW, Fonesca JP, Tian W, Ramirez V, Luan S, Pauly M, Hake S (2017) The maize MID-COMPLEMENTING ACTIVITY homolog CELL NUMBER REGULATOR13/NARROW ODD DWARF coordinates organ growth and tissue patterning. Plant Cell 29:474–490

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  206. Russell WA (1991) Genetic improvements of maize yields. Adv Agron 46:245–298

    Article  Google Scholar 

  207. Russell SH, Evert RF (1985) Leaf vasculature in Zea mays L. Planta 164:448–458

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  208. Russell WK, Stuber CW (1983) Effects of photoperiod and temperatures on the duration of vegetative growth in maize. Crop Sci 23:847–850

    Article  Google Scholar 

  209. Ruzinova MB, Benezra R (2003) Id proteins in development, cell cycle and cancer. Trends Cell Biol 13:410–418

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  210. Satterlee JW, Strable J, Scanlon MJ (2020) Plant stem cell organization and differentiation at single-cell resolution. Proc Natl Acad Sci U S A 117:33689–33699

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  211. Scanlon MJ (2000) NARROW SHEATH1 functions from two meristematic foci during founder-cell recruitment in maize leaf development. Development 127:4573–4585

    CAS  PubMed  PubMed Central  Google Scholar 

  212. Scanlon MJ, Schneeberger RG, Freeling M (1996) The maize mutant narrow sheath fails to establish leaf margin identity in the meristematic domain. Development 122:1683–1691

    CAS  PubMed  PubMed Central  Google Scholar 

  213. Schnable JC, Freeling M (2011) Genes identified by visible mutant phenotypes show increased bias toward one of two subgenomes of maize. PLoS One 6:e17855

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  214. Schneeberger RG, Becraft PW, Hake S, Freeling M (1995) Ectopic expression of the knox homeo box gene rough sheath1 alters cell fate in the maize leaf. Genes Dev 9:2292–2304

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  215. Schneeberger RG, Tsiantis M, Freeling M, Langdale JA (1998) The rough sheath2 gene negatively regulates homeobox gene expression during maize leaf development. Development 125:2857–2865

    CAS  PubMed  PubMed Central  Google Scholar 

  216. Schütze K, Harter K, Chaben C (2008) Post-translational regulation of plant bZIP factors. Trends Plant Sci 13:247–255

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  217. Shannon LM (2012) The genetic architecture of maize domestication and range expansion. PhD thesis. The University of Wisconsin-Madison, Madison

    Google Scholar 

  218. Shannon LM, Chen Q, Doebley JF (2019) A BC2S3 maize-teosinte RIL population for QTL mapping. Maize Genet Coop News Lett 93

  219. Sharman BC (1942) Developmental anatomy of the shoot of Zea mays L. Ann Bot (Lond) 6:245–282

    Article  Google Scholar 

  220. Sheridan WF (1988) Maize developmental genetics: genes of morphogenesis. Annu Rev Genet 22:353–385

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  221. Shi J, Gao H, Wang H, Lafitte HR, Archiblad RL, Yang M, Hakimi SM, Mo H, Habben JE (2016) ARGOS8 variants generated by CRISPR-Cas9 improve maize grain yield under field drought stress conditions. Plant Biotechnol J 15:207–216

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  222. Shi J, Habben JE, Archibald RL, Drummond BJ, Chamberlin MA, Williams RW, Lafitte HR, Weers BP (2015) Overexpression of ARGOS gene modifies plant sensitivity to ethylene, leading to improved drought tolerance in both Arabidopsis and maize. Plant Physiol 169:266–282

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  223. Sinha N, Hake H (1990) Mutant characters of Knotted maize leaves are determined in the innermost tissue layers. Dev Biol 141:203–210

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  224. Skirpan A, Culler AH, Gallavotti A, Jackson D, Cohen JD, McSteen P (2009) BARREN INFLORESCENCE2 interaction with ZmPIN1a suggests a role in auxin transport during maize inflorescence development. Plant Cell Physiol 50:652–657

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  225. Skirpan A, Wu X, McSteen P (2008) Genetic and physical interaction suggest that BARREN STALK1 is a target of BARREN INFLORESCENCE2 in maize inflorescence development. Plant J 55:787–797

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  226. Smith LG, Greene B, Veit B, Hake S (1992) A dominant mutation in the maize homeobox, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development 116:21–30

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Smith LG, Hake S, Sylvester AW (1996) The tangled-1 mutation alters cell division orientations throughout maize leaf development without altering leaf shape. Development 122:481–489

    CAS  PubMed  PubMed Central  Google Scholar 

  228. Somssich M, Je BI, Simon R, Jackson D (2016) CLAVATA-WUSCHEL signaling in the shoot meristem. Development 143:3238–3248

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  229. Soyk S, Benoit M, Lippman ZB (2020) Epistasis in crop quantitative trait variation. Annu Rev Genet 54:13.1–13.21

    Article  CAS  Google Scholar 

  230. Steeves T, Sussex I (1989) Patterns in plant development. University Presse, Cambridge, UK

    Google Scholar 

  231. Steffensen DM (1968) A reconstruction of cell development in the shoot apex of maize. Am J Bot 55:354–369

    Article  Google Scholar 

  232. Stewart DW, Costa C, Dwyer LM, Smith DL, Hamilton RI, Ma BL (2003) Canopy structure, light interception, and photosynthesis in maize. Agron J 95:1465–1474

    Article  Google Scholar 

  233. Stitzer MC, Ross-Ibarra J (2018) Maize domestication and gene interaction. New Phytol 220:395–408

    PubMed  Article  PubMed Central  Google Scholar 

  234. Strable J, Wallace JG, Unger-Wallace E, Briggs S, Bradbury PJ, Buckler ES, Vollbrecht E (2017) Maize YABBY genes drooping leaf1 and drooping leaf2 regulate plant architecture. Plant Cell 29:1622–1641

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  235. Studer A, Zhao Q, Ross-Ibarra J, Doebley J (2011) Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet 43:1160–1163

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  236. Sun S, Chen D, Li X, Qiao S, Shi C, Li C, Shen H, Wang X (2015) Brassinosteroid signaling regulates leaf erectness in Oryza sativa via the control of a specific U-type cyclin and cell proliferation. Dev Cell 34:220–228

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  237. Sun X, Cahill J, Van Hautegem T, Feys K, Whipple C, Novák O, Delbare S, Versteele C, Demuynck K, De Block J, Storme V, Claeys H, Van Lijsebettens M, Coussens G, Ljung K, De Vliegher A, Muszynski M, Inzé D, Nelissen H (2017) Altered expression of maize PLASTOCHRON1 enhances biomass and seed trait by extending cell division duration. Nat Commun 8:14752

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  238. Sussex IM, Kerk NM (2001) The evolution of plant architecture. Curr Opin Plant Biol 4:33–37

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  239. Suzuki M, Latshaw S, Sato Y, Settles AM, Koch KE, Hannah LC, Kojima M, Sakakibara H, McCarty DR (2008) The maize Viviparaous8 locus, encoding a putative ALTERED MERISTEM PROGRAM1-like peptidase, regulates abscisic acid accumulation and coordinates embryo and endosperm development. Plant Physiol 146:1193–1206

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  240. Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM (2015) Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol 169:931–945

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  241. Sylvester AW, Cande WZ, Freeling M (1990) Division and differentiation during normal and liguleless-1 maize leaf development. Development 110:985–1000

    CAS  PubMed  PubMed Central  Google Scholar 

  242. Sylvester AW, Smith LG, Freeling M (1996) Acquisition of identity in the developing leaf. Annu Rev Cell Dev Biol 12:257–304

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  243. Taagen E, Bogdanove AJ, Sorrells ME (2020) Counting on crossovers: controlled recombination for plant breeding. Trends Plant Sci 25:455–465

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  244. Taguchi-Shiobara F, Yuan Z, Hake S, Jackson D (2001) The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Genes Dev 15:2755–2766

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  245. Takacs EM, Li J, Du C, Ponnala L, Janick-Buckner D, Yu J, Muehlbauer GJ, Schnable PS, Timmermans MCP, Sun Q, Nettleton D, Scanlon MJ (2012) Ontogeny of the maize shoot apical meristem. Plant Cell 24:3219–3234

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  246. Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF, Gaut BS (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci U S A 98:9161–9166

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  247. Teng F, Zhai L, Liu R, Bai W, Wang L, Huo D, Tao Y, Zheng Y, Zhang Z (2013) ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize. Plant J 73:405–416

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  248. Thompson AM, Crants JE, Schnable PS, Yu J, Timmermans MCP, Springer NM, Scanlon MJ, Muehlbauer GJ (2014) Genetic control of maize shoot apical meristem architecture. G3 4:1327–1337

  249. Thompson AM, Yu J, Timmermans MCP, Schnable PS, Crants JE, Scanlon MJ, Muehlbauer GJ (2015) Diversity of maize shoot apical meristem architecture and its relationship to plant morphology. G3 5:819–827

    PubMed  Article  PubMed Central  Google Scholar 

  250. Tian F, Bradbury PJ, Brown PJ, Hung H, Sun Q, Flint-Garcia S, Rocheford TR, McMullen MD, Holland JB, Buckler ES (2011) Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 43:159–162

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  251. Tian J, Wang C, Xia J, Wu L, Xu G, Wu W, Li D, Qin W, Han X, Chen Q, Jin W, Tian F (2019) Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science 365:658–664

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  252. Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci U S A 108:20260–20264

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  253. Timmermans MCP, Hudson A, Becraft PW, Nelson T (1999) ROUGH SHEATH2: A Myb protein that represses knox homeobox genes in maize lateral organ primordia. Science 284:151–153

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  254. Timmermans MCP, Schultes NP, Jankovsky JP, Nelson T (1998) Leafbladeless1 is required for dorsoventrality of lateral organs in maize. Development 125:2813–2823

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Troyer AF (1996) Breeding widely adapted, popular maize hybrids. Euphytica 92:163–174

    Article  Google Scholar 

  256. Tsiantis M, Schneeberger R, Golz JF, Freeling M, Langdale JA (1999) The maize rough sheath2 gene and leaf development programs in monocot and dicot plants. Science 284:154–156

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  257. Tsuda K, Abraham-Juarez MJ, Maeno A, Dong Z, Aromdee D, Meeley R, Shiroishi T, Nonomura K, Hake S (2017) KNOTTED1 cofactors, BLH12 and BLH14, regulate internode patterning and vein anastomosis in maize. Plant Cell 29:1105–1118

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  258. Tsuda K, Kurata N, Ohyanagi H, Hake S (2014) Genome-wide study of KNOX regulatory network reveals brassinosteroid catabolic genes important for shoot meristem function in rice. Plant Cell 26:3488–3500

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  259. Tuberosa R, Salvi S (2009) QTL for agronomic traits in maize plants. In: Handbook of Maize – Volume II: Genetics and Genomics. Springer, New York, pp 501–541

    Google Scholar 

  260. van der Knaap E, Kim JH, Kende H (2000) A novel gibberellin-induced gene from rice and its potential regulatory role in stem growth. Plant Physiol 122:695–704

    PubMed  PubMed Central  Article  Google Scholar 

  261. van Overbeek J (1936) “Lazy” an a-geotropic form of maize. “Gravitational indifference” rather than structural weakness accounts for prostrate growth habit of this form. J Hered 27:93–96

    Article  Google Scholar 

  262. Veit B, Briggs SP, Schmidt RJ, Yanofsky MF, Hake S (1998) Regulation of leaf initiation by the terminal ear 1 gene of maize. Nature 393:166–168

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  263. Veit B, Vollbrecht E, Mathern J, Hake S (1990) A tandem duplication causes the Kn1-O allele of Knotted, a dominant morphological mutant of maize. Genetics 125:623–631

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  264. Vlăduţu C, McLaughlin J, Phillips RL (1999) Fine mapping and characterization of linked quantitative trait loci involved in the transition of the maize apical meristem from vegetative to generative structures. Genetics 153:993–1007

    PubMed  PubMed Central  Google Scholar 

  265. Vollbrecht E, Reiser L, Hake S (2000) Shoot meristem size is dependent on inbred background and presence of the maize homeobox gene, knotted1. Development 127:3161–3172

    CAS  PubMed  PubMed Central  Google Scholar 

  266. Vollbrecht E, Veit B, Sinha N, Hake S (1991) The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature 350:241–243

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  267. Walley JW, Sartor RC, Shen Z, Schmitz RJ, Wu KJ, Urich MA, Nery JR, Smith LG, Schnable JC, Ecker JR, Briggs SP (2016) Integration of omic networks in a developmental atlas of maize. Science 353:814–818

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  268. Walsh J, Waters CA, Freeling M (1998) The maize gene liguleless2 encodes a basic-leucine zipper protein involved in the establishment of the blade-sheath boundary. Genes Dev 12:208–218

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  269. Wang B, Lin Z, Li X, Zhao Y, Zhao B, Wu G, Ma X, Wang H, Xie Y, Li Q, Song G, Kong D, Zheng Z, Wei H, Shen R, Wu H, Chen C, Meng Z, Wang T, Li Y, Li X, Chen Y, Lai J, Hufford MB, Ross-Ibarra J, He H, Wang H (2020a) Genome-wide selection and genetic improvement during modern maize breeding. Nat Genet 52:565–571

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  270. Wang B, Smith SM, Li J (2018a) Genetic regulation of shoot architecture. Annu Rev Plant Biol 69:437–468

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  271. Wang H, Cimen E, Singh N, Buckler E (2020b) Deep learning for plant genomics and crop improvement. Curr Opin Plant Biol 54:34–41

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  272. Wang P, Kelly S, Fouracre JP, Langdale JA (2013) Genome-wide transcript analysis of early maize leaf development reveals gene cohorts associated with the differentiation of C4 Kranz anatomy. Plant J 75:656–670

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  273. Wang X, Chen Q, Wu Y, Lemmon ZH, Xu G, Huang C, Liang Y, Xu D, Li D, Doebley JF, Tian F (2018b) Genome-wide analysis of transcriptional variability in a large maize-teosinte population. Mol Plant 11:443–459

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  274. Washburn JD, Burch MB, Franco JAV (2020) Predictive breeding for maize: making use of molecular phenotypes, machine learning and physiological crop models. Crop Sci 60:622–638

    Article  Google Scholar 

  275. Washburn JD, Mejía-Guerrra MK, Ramstein G, Kremling KA, Valluru R, Buckler ES, Wang H (2019) Evolutionary informed deep learning methods for predictive relative transcript abundance from DNA sequence. Proc Natl Acad Sci U S A 116:5542–5549

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  276. Wei X, Wang X, Guo S, Zhou J, Shi Y, Wang H, Dou D, Song X, Li G, Ku L, Cheng Y (2016) Epistatic and QTLxenvironment interaction effects on leaf area-associated traits in maize. Plant Breed 135:671–676

    CAS  Article  Google Scholar 

  277. Whipple CJ, Kebrom TH, Weber AL, Yang F, Hall D, Meeley R, Schmidt R, Doebley J, Brutnell TP, Jackson DP (2011) grassy tillers1 promotes apical dominance in maize and responds to shade signals in the grasses. Proc Natl Acad Sci U S A 108:E506–E512

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  278. Wills DM, Whipple CJ, Takuno S, Kursel LE, Shannon LM, Ross-Ibarra J, Doebley JF (2013) From many, one: genetic control of prolificacy during maize domestication. PLoS Genet 9:e1003604

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  279. Winkler RG, Freeling M (1994) Physiological genetics of the dominant gibberellin-non-responsive maize dwarfs, Dwarf8 and Dwarf9. Planta 193:341–348

    CAS  Article  Google Scholar 

  280. Winkler RG, Helentjaris T (1995) The maize dwarf3 gene encodes a cytochrome P450-mediated early step in gibberellin biosynthesis. Plant Cell 7:1307–1317

    CAS  PubMed  PubMed Central  Google Scholar 

  281. Wittkopp PJ, Kalay G (2012) Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat Rev Genet 13:59–69

    CAS  Article  Google Scholar 

  282. Woodward JB, Abeydeera ND, Paul D, Phillips K, Rapala-Kozik M, Freeling M, Begley TP, Ealick SE, McSteen P, Scanlon MJ (2010) A maize thiamine auxotroph is defective in shoot meristem maintenance. Plant Cell 22:3305–3317

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  283. Wu Q, Regan M, Furukawa H, Jackson D (2018) Role of heterotrimeric Gα proteins in maize development and enhancement of agronomic traits. PLoS Genet 14:e1007374

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  284. Wu Q, Xu F, Liu L, Char SN, Ding Y, Je BI, Schmelz E, Yang B, Jackson D (2020) The maize heterotrimeric G protein β subunit controls shoot meristem development and immune response. Proc Natl Acad Sci U S A 117:1799–1805

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  285. Xing A, Gao Y, Ye L, Zhang W, Cai L, Ching A, Llaca V, Johnson B, Liu L, Yang X, Kang D, Yan J, Li J (2015) A rare SNP mutation in Brachytic2 moderately reduces plant height and increases yield potential in maize. J Exp Bot 66:3791–3802

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  286. Xu G, Cao J, Wang X, Chen Q, Jin W, Li Z, Tian F (2019) Evolutionary metabolomics identifies substantial metabolic divergence between maize and its wild ancestor, teosinte. Plant Cell 31:1990–2009

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  287. Xu M, Hu T, McKim SM, Murmu J, Haughn GW, Hepworth SR (2010) Arabidopsis BLADE-ON-PETIOLE1 and 2 promote floral meristem fate and determinacy in a previously undefined pathway targeting APETALA1 and AGAMOUS-LIKE24. Plant J 63:974–989

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  288. Xu XM, Wang J, Xuan Z, Goldschmidt A, Borrill PGM, Hariharan N, Kim JY, Jackson D (2011) Chaperonins facilitate KNOTTED1 cell-to-cell trafficking and stem cell function. Science 333:1141–1144

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  289. Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano HY (2004) The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell 16:500–509

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  290. Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M (2000) Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 12:1591–1606

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  291. Yan Y, Christensen S, Isakeit T, Engelberth J, Meeley R, Hayward A, Emery RJN, Kolomiets MV (2012) Disruption of OPR7 and OPR8 reveals the versatile functions of jasmonic acid in maize development and defense. Plant Cell 24:1420–1436

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  292. Yang F, Bui HT, Pautler M, Llaca V, Johnston R, Lee BH, Kolbe A, Sakai H, Jackson D (2015) A maize glutaredoxin gene, Abphyl2, regulates shoot meristem size and phyllotaxy. Plant Cell 27:121–131

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  293. Yang G, Liu J, Zhao C, Li Z, Huang Y, Yu H, Xu B, Yang X, Zhu D, Zhang X, Zhang R, Feng H, Zhao X, Li Z, Li H, Yang H (2017) Unmanned aerial vehicle remote sensing for field-based crop phenotyping: current status and perspectives. Front Plant Sci 8:1111

    PubMed  PubMed Central  Article  Google Scholar 

  294. Yang N, Liu J, Gao Q, Gui S, Chen L, Yang L, Huang J, Deng T, Luo J, He L, Wang Y, Xu P, Peng Y, Shi Z, Lan L, Ma Z, Yang X, Zhang Q, Bai M, Li S, Li W, Liu L, Jackson D, Yan J (2019) Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nat Genet 51:1052–1059

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  295. Yao H, Skirpan A, Wardell B, Matthes MS, Best NB, McCubbin T, Durbak A, Smith T, Malcomber S, McSteen P (2019) The barren stalk2 gene is required for axillary meristem development in maize. Mol Plant 12:374–389

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  296. Yu J, Holland JB, McMullen MD, Buckler ES (2008) Genetic design and statistical power of nested association mapping in maize. Genetics 178:539–551

    PubMed  PubMed Central  Article  Google Scholar 

  297. Yu X, Leiboff S, Li X, Guo T, Ronning N, Zhang X, Muehlbauer GJ, Timmermans MCP, Schnable PS, Scanlon MJ, Yu J (2020) Genomic prediction of maize microphenotypes provides insights for optimizing selection and mining diversity. Plant Biotechnol J. https://doi.org/10.1111/pbi.13420

  298. Zhang D, Sun W, Singh R, Zheng Y, Cao Z, Li M, Hake S, Zhang Z (2018) GRF-interacting factor1 regulates shoot architecture and meristem determinacy in maize. Plant Cell 30:360–374

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  299. Zhang H, Wang X, Pan Q, Li P, Liu Y, Lu X, Zhong W, Li M, Han L, Li J, Wang P, Li D, Liu Y, Li Q, Yang F, Zhang YM, Wang G, Li L (2019b) QTG-seq accelerates QTL fine mapping through QTL partitioning and whole-genome sequencing of bulked segregant samples. Mol Plant 12:426–437

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  300. Zhang LY, Bai MY, Wu J, Zhu JY, Wang H, Zhang Z, Wang W, Sun Y, Zhao J, Sun X, Yang H, Xu Y, Kim SH, Fujioka S, Lin WH, Chong K, Lu T, Wang ZY (2009) Antagonistic HLH.bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis. Plant Cell 21:3767–3780

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  301. Zhang X, Huang C, Wu D, Qiao F, Li W, Duan L, Wang K, Xiao Y, Chen G, Liu Q, Xiong L, Yang W, Yan J (2017) High-throughput phenotyping and QTL mapping reveals the genetic architecture of maize plant growth. Plant Physiol 173:1554–1564

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  302. Zhang X, Lin Z, Wang J, Liu H, Zhou L, Zhong S, Li Y, Zhu C, Liu J, Lin Z (2019a) The tin1 gene retains the function of promoting tillering in maize. Nat Commun 10:5608

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  303. Zhao J, Yang X, Lin X, Sassenrath GF, Dai S, Lv S, Chen X, Chen F, Mi G (2015) Radiation interception and use efficiency contributes to higher yields of newer maize hybrids in Northeast China. Agron J 107:1473–1480

    Article  Google Scholar 

  304. Zhou S, Kremling KA, Bandillo N, Ritcher A, Zhang YK, Ahern KR, Artyukhin AB, Hui JX, Younkin GC, Schroeder FC, Buckler ES, Jander G (2019) Metabolome-scale genome-wide association studies reveal chemical diversity and genetic control of maize specialized metabolites. Plant Cell 31:937–955

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

This manuscript benefited from the insightful comments and helpful critique provided by China Lunde, Jack Satterlee, Zhaobin Dong, María Jazmín Abraham-Juárez, and Kevin Ahern, as well as two anonymous reviewers—to all of you, many thanks for improving clarity of this manuscript. Bret Timmons and Thomas Paul are gratefully acknowledged for excellent plant care.

Code availability

Not applicable

Funding

JS was supported by the National Science Foundation Plant Genome Postdoctoral Research Fellowship (IOS-1710973)

Author information

Affiliations

Authors

Contributions

Manuscript preparation (JS)

Corresponding author

Correspondence to Josh Strable.

Ethics declarations

Ethics approval

Not applicable

Consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The author declares no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Maize Genetics, Genomics and Sustainable Improvement

Supplementary information

ESM 1

(XLSX 30 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Strable, J. Developmental genetics of maize vegetative shoot architecture. Mol Breeding 41, 19 (2021). https://doi.org/10.1007/s11032-021-01208-1

Download citation

Keywords

  • Maize
  • Shoot architecture
  • Shoot apical meristem
  • Axillary meristem
  • Blade/sheath boundary
  • Tiller
  • Leaf
  • Stem