Skip to main content
Log in

Assessment of the fruit-ripening-related FUL2 gene diversity in morphophysiologically contrasted cultivated and wild tomato species

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Members of the Solanum section Lycopersicon are characterized by different fruit morphophysiology. The MADS-box gene FRUITFULL encodes a transcription factor involved in the regulation of flowering time and fruit development. In the present study, we identified and characterized FUL2 gene orthologs from 10 different tomato accessions in terms of polymorphism, phylogenetic relatedness, and expression pattern. The identified genes had a size from 5827 bp in S. habrochaites to 6229 bp in S. peruvianum 3966 and contained eight exons. The genes demonstrated significantly higher variability in introns (960 SNPs and 76 indels) than in exons (46 SNPs); non-synonymous SNPs were translated into 22 neutral and 20 slightly deleterious amino acid substitutions (12.24% variability in protein sequences). All predicted FUL2 proteins contained the conserved euFUL motif MPP[W/C]MLRHLNG at the C-terminus and had secondary and tertiary structures common for MADS-domain transcription factors. The FUL2-based evolutionary relationships in cultivated and wild tomatoes were mainly consistent with the accession crossability. All FUL2 genes were transcribed in flowers and fruits and demonstrated two distinct expression patterns with the maximum in mature green or ripe fruits, respectively. The obtained data should contribute to understanding of genetic potential of this ripening-related transcription factor for tomato breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

I:

Intervening region

K:

Keratin-like

AP1 :

APETALA1

TAGL1 :

TOMATO AGAMOUS-LIKE 1

FUL :

FRUITFULL

SHP :

SHATTERPROOF

RIN :

RIPENING INHIBITOR

SC:

Self-compatible

SI:

Self-incompatible

RF:

Red-fruited

GF:

Green-fruited

MG:

Mature green

SNP:

Single-nucleotide polymorphism

References

  • Alvarez-Buylla ER, García-Ponce B, Garay-Arroyo A (2006) Unique and redundant functional domains of APETALA1 and CAULIFLOWER, two recently duplicated Arabidopsis thaliana floral MADS-box genes. J Exp Bot 57(12):3099–3107

    Article  PubMed  CAS  Google Scholar 

  • Ampomah-Dwamena C, Morris BA, Sutherland P, Veit B, Yao JL (2002) Down-regulation of TM29, a tomato SEPALLATA homolog, causes parthenocarpic fruit development and floral reversion. Plant Physiol 130(2):605–617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arakawa T, Timasheff SN (1985) Theory of protein solubility. Methods Enzymol 114:49–77

    Article  PubMed  CAS  Google Scholar 

  • Beckles DM (2012) Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol Technol 63(1):129–140

    Article  CAS  Google Scholar 

  • Beckles DM, Hong N, Stamova L, Luengwilai K (2012) Biochemical factors contributing to tomato fruit sugar content: a review. Fruits 67:49–64

    Article  CAS  Google Scholar 

  • Bemer M, Karlova R, Ballester AR, Tikunov YM, Bovy AG, Wolters-Arts M, Rossetto Pde B, Angenent GC, de Maagd RA (2012) The tomato FRUITFULL homologs TDR4/FUL1 and MBP7/FUL2 regulate ethylene-independent aspects of fruit ripening. Plant Cell 24:4437–4451

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bergougnoux V (2014) The history of tomato: from domestication to biopharming. Biotechnol Adv 32(1):170–189

    Article  PubMed  CAS  Google Scholar 

  • Blanca J, Cañizares J, Cordero L, Pascual L, Diez MJ, Nuez F (2012) Variation revealed by SNP genotyping and morphology provides insight into the origin of the tomato. PLoS One 7(10):e48198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen KY, Tanksley SD (2004) High-resolution mapping and functional analysis of se2.1: a major stigma exertion quantitative trait locus associated with the evolution from allogamy to autogamy in the genus Lycopersicon. Genetics 168(3):1563–1573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chevalier C, Nafati M, Mathieu-Rivet E, Bourdon M, Frangne N, Cheniclet C, Renaudin JP, Gévaudant F, Hernould M (2011) Elucidating the functional role of endoreduplication in tomato fruit development. Ann Bot 107(7):1159–1169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi Y, Sims GE, Murphy S, Miller JR, Chan AP (2012) Predicting the functional effect of amino acid substitutions and indels. PLoS One 7(10):e46688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davies JN (1966) Occurrence of sucrose in the fruit of some species of Lycopersicon. Nature 209(5023):640–641

    Article  CAS  Google Scholar 

  • Dong Y, Wang YZ (2015) Seed shattering: from models to crops. Front Plant Sci 6:476

    PubMed  PubMed Central  Google Scholar 

  • Egea-Cortines M, Saedler H, Sommer H (1999) Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J 18(19):5370–5379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elliott KJ, Butler WO, Dickinson CD, Konno Y, Vedvick TS, Fitzmaurice L, Mirkov TE (1993) Isolation and characterization of fruit vacuolar invertase genes from two tomato species and temporal differences in mRNA levels during fruit ripening. Plant Mol Biol 21(3):515–524

    Article  PubMed  CAS  Google Scholar 

  • Expósito-Rodríguez M, Borges AA, Borges-Pérez A, Pérez JA (2008) Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol 8:131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Ferrándiz C, Fourquin C (2014) Role of the FUL-SHP network in the evolution of fruit morphology and function. J Exp Bot 65(16):4505–4513

    Article  PubMed  CAS  Google Scholar 

  • Ferrándiz C, Pelaz S, Yanofsky MF (1999) Control of carpel and fruit development in Arabidopsis. Annu Rev Biochem 68:321–354

    Article  PubMed  Google Scholar 

  • Ferrándiz C, Liljegren SJ, Yanofsky MF (2000) Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science 289(5478):436–438

    Article  PubMed  Google Scholar 

  • Fujisawa M, Nakano T, Ito Y (2011) Identification of potential target genes for the tomato fruit-ripening regulator RIN by chromatin immunoprecipitation. BMC Plant Biol 11:26

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fujisawa M, Shima Y, Higuchi N, Nakano T, Koyama Y, Kasumi T, Ito Y (2012) Direct targets of the tomato-ripening regulator RIN identified by transcriptome and chromatin immunoprecipitation analyses. Planta 235:1107–1122

    Article  PubMed  CAS  Google Scholar 

  • Fujisawa M, Shima Y, Nakagawa H, Kitagawa M, Kimbara J, Nakano T, Kasumi T, Ito Y (2014) Transcriptional regulation of fruit ripening by tomato FRUITFULL homologs and associated MADS box proteins. Plant Cell 26(1):89–101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giovannoni JJ (2007) Fruit ripening mutants yield insights into ripening control. Curr Opin Plant Biol 10:283–289

    Article  PubMed  CAS  Google Scholar 

  • Grumet R, Fobes JF, Herner RC (1981) Ripening behavior of wild tomato species. Plant Physiol 68(6):1428–1432

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gu Q, Ferrándiz C, Yanofsky MF, Martienssen R (1998) The FRUITFULL MADS-box gene mediates cell differentiation during Arabidopsis fruit development. Development 125(8):1509–1517

    PubMed  CAS  Google Scholar 

  • Hempel FD, Welch DR, Feldman LJ (2000) Floral induction and determination: where is flowering controlled? Trends Plant Sci 5(1):17–21

    Article  PubMed  CAS  Google Scholar 

  • Hileman LC, Sundstrom JF, Litt A, Chen M, Shumba T, Irish VF (2006) Molecular and phylogenetic analyses of the MADS-box gene family in tomato. Mol Biol Evol 23(11):2245–2258

    Article  PubMed  CAS  Google Scholar 

  • Hiwasa K, Kinugasa Y, Amano S, Hashimoto A, Nakano R, Inaba A, Kubo Y (2003) Ethylene is required for both the initiation and progression of softening in pear (Pyrus communis L.) fruit. J Exp Bot 54:771–779

    Article  PubMed  CAS  Google Scholar 

  • Huang K, Louis JM, Donaldson L, Lim FL, Sharrocks AD, Clore GM (2000) Solution structure of the MEF2A-DNA complex: structural basis for the modulation of DNA bending and specificity by MADS-box transcription factors. EMBO J 19(11):2615–2628

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Igic B, Lande R, Kohn JR (2008) Loss of self incompatibility and its evolutionary consequences. Int J Plant Sci 169:93–104

    Article  Google Scholar 

  • Immink RG, Tonaco IA, de Folter S, Shchennikova A, van Dijk AD, Busscher-Lange J, Borst JW, Angenent GC (2009) SEPALLATA3: the ‘glue’ for MADS box transcription factor complex formation. Genome Biol 10(2):R24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ito Y, Nakano T (2015) Development and regulation of pedicel abscission in tomato. Front Plant Sci 6:442

    Article  PubMed  PubMed Central  Google Scholar 

  • Ito Y, Kitagawa M, Ihashi N, Yabe K, Kimbara J, Yasuda J, Ito H, Inakuma T, Hiroi S, Kasumi T (2008) DNA-binding specificity, transcriptional activation potential, and the rin mutation effect for the tomato fruit-ripening regulator RIN. Plant J 55:212–223

    Article  PubMed  CAS  Google Scholar 

  • Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat Protoc 10(6):845–858

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kozlowski LP (2016) IPC—Isoelectric Point Calculator. Biol Direct 11(1):55

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leseberg CH, Eissler CL, Wang X, Johns MA, Duvall MR, Mao L (2008) Interaction study of MADS-domain proteins in tomato. J Exp Bot 59:2253–2265

    Article  PubMed  CAS  Google Scholar 

  • Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, Yanofsky MF (2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404(6779):766–770

    Article  PubMed  CAS  Google Scholar 

  • Llorente B, D’Andrea L, Ruiz-Sola MA, Botterweg E, Pulido P, Andilla J, Loza-Alvarez P, Rodriguez-Concepcion M (2016) Tomato fruit carotenoid biosynthesis is adjusted to actual ripening progression by a light-dependent mechanism. Plant J 85(1):107–119

    Article  PubMed  CAS  Google Scholar 

  • Mandel MA, Yanofsky MF (1995) The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1. Plant Cell 7(11):1763–1771

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marshall JA, Knapp S, Davey MR, Power JB, Cocking EC, Bennett MD, Cox AV (2001) Molecular systematics of Solanum section Lycopersicum (Lycopersicon) using the nuclear ITS rDNA region. Theor Appl Genet 103:1216–1222

    Article  CAS  Google Scholar 

  • McClean PE, Hanson MR (1986) Mitochondrial DNA sequence divergence among Lycopersicon and related Solanum species. Genetics 112:649–667

    PubMed  PubMed Central  CAS  Google Scholar 

  • Miller JS, Kostyun JL (2011) Functional gametophytic self-incompatibility in a peripheral population of Solanum peruvianum (Solanaceae). Heredity (Edinb) 107:30–39

    Article  CAS  Google Scholar 

  • Palmer JD, Zamir D (1982) Chloroplast DNA evolution and phylogenetic relationships in Lycopersicon. Proc Natl Acad Sci U S A 79:5006–5010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pease JB, Haak DC, Hahn MW, Moyle LC (2016) Phylogenomics reveals three sources of adaptive variation during a rapid radiation. PLoS Biol 14(2):e1002379

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peralta IE, Spooner DM (2001) Granule-bound starch synthase (GBSSI) gene phylogeny of wild tomatoes (Solanum L. section Lycopersicon [Mill.] Wettst. subsection Lycopersicon). Am J Bot 88:1888–1902

    Article  PubMed  CAS  Google Scholar 

  • Peralta IE, Knapp S, Spooner DM (2005) New species of wild tomatoes (Solanum section Lycopersicon: Solanaceae) from northern Peru. Syst Bot 30(2):424–434

    Article  Google Scholar 

  • Peralta IE, Spooner DM, Knapp S (2008) Taxonomy of wild tomatoes and their relatives (Solanum sect. Lycopersicoides, sect. Juglandifolia, sect. Lycopersicon; Solanaceae). Syst Bot Monogr 84:1–186

    Google Scholar 

  • Pesaresi P, Mizzotti C, Colombo M, Masiero S (2014) Genetic regulation and structural changes during tomato fruit development and ripening. Front Plant Sci 5:124

    Article  PubMed  PubMed Central  Google Scholar 

  • Pnueli L, Hareven D, Broday L, Hurwitz C, Lifschitz E (1994a) The TM5 MADS box gene mediates organ differentiation in the three inner whorls of tomato flowers. Plant Cell 6(2):175–186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pnueli L, Hareven D, Rounsley SD, Yanofsky MF, Lifschitz E (1994b) Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants. Plant Cell 6(2):163–173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Puranik S, Acajjaoui S, Conn S, Costa L, Conn V, Vial A, Marcellin R, Melzer R, Brown E, Hart D, Theißen G, Silva CS, Parcy F, Dumas R, Nanao M, Zubieta C (2014) Structural basis for the oligomerization of the MADS domain transcription factor SEPALLATA3 in Arabidopsis. Plant Cell 26(9):3603–3615

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qin G, Zhu Z, Wang W, Cai J, Chen Y, Li L, Tian S (2016) A tomato vacuolar invertase inhibitor mediates sucrose metabolism and influences fruit ripening. Plant Physiol 172(3):1596–1611

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Santelli E, Richmond TJ (2000) Crystal structure of MEF2A core bound to DNA at 1.5 A resolution. J Mol Biol 297(2):437–449

    Article  PubMed  CAS  Google Scholar 

  • Schwartz R, Ting CS, King J (2001) Whole proteome pI values correlate with subcellular localizations of proteins for organisms within the three domains of life. Genome Res 11(5):703–709

    Article  PubMed  CAS  Google Scholar 

  • Seymour GB, Granell A (2014) Fruit development and ripening. J Exp Bot 65(16):4489–4490

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seymour G, Poole M, Manning K, King GJ (2008) Genetics and epigenetics of fruit development and ripening. Curr Opin Plant Biol 11(1):58–63

    Article  PubMed  CAS  Google Scholar 

  • Shima Y, Kitagawa M, Fujisawa M, Nakano T, Kato H, Kimbara J, Kasumi T, Ito Y (2013) Tomato FRUITFULL homologues act in fruit ripening via forming MADS-box transcription factor complexes with RIN. Plant Mol Biol 82(4–5):427–438

    Article  PubMed  CAS  Google Scholar 

  • Shima Y, Fujisawa M, Kitagawa M, Nakano T, Kimbara J, Nakamura N, Shiina T, Sugiyama J, Nakamura T, Kasumi T, Ito Y (2014) Tomato FRUITFULL homologs regulate fruit ripening via ethylene biosynthesis. Biosci Biotechnol Biochem 78(2):231–237

    Article  PubMed  CAS  Google Scholar 

  • Sillero A, Ribeiro JM (1989) Isoelectric points of proteins: theoretical determination. Anal Biochem 179:319–325

    Article  PubMed  CAS  Google Scholar 

  • Slugina MA, Shchennikova AV, Kochieva EZ (2017a) Novel SlFUL2 orthologous genes and analysis of their expression in wild and cultivated tomato of the section Lycopersicon. Russ J Genet 53(6):672–679

    Article  CAS  Google Scholar 

  • Slugina MA, Shchennikova AV, Kochieva EZ (2017b) TAI vacuolar invertase orthologs: the interspecific variability in tomato plants (Solanum section Lycopersicon). Mol Gen Genomics 292(5):1123–1138

    Article  CAS  Google Scholar 

  • Slugina MA, Shchennikova AV, Kochieva EZ (2018) LIN7 cell-wall invertase orthologs in cultivated and wild tomatoes (Solanum section Lycopersicon). Plant Mol Biol Report 36:195–209. https://doi.org/10.1007/s11105-018-1071-5

    Article  CAS  Google Scholar 

  • Talley K, Alexov E (2010) On the pH-optimum of activity and stability of proteins. Proteins 78(12):2699–2706

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101:11030–11035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tanksley SD (2004) The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell 16(Suppl):S181–S189

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • The 100 Tomato Genome Sequencing Consortium, Aflitos S, Schijlen E, de Jong H, de Ridder D, Smit S, Finkers R, Wang J, Zhang G, Li N, Mao L, Bakker F, Dirks R, Breit T, Gravendeel B, Huits H, Struss D, Swanson-Wagner R, van Leeuwen H, van Ham RC, Fito L, Guignier L, Sevilla M, Ellul P, Ganko E, Kapur A, Reclus E, de Geus B, van de Geest H, Te Lintel Hekkert B, van Haarst J, Smits L, Koops A, Sanchez-Perez G, van Heusden AW, Visser R, Quan Z, Min J, Liao L, Wang X, Wang G, Yue Z, Yang X, Xu N, Schranz E, Smets E, Vos R, Rauwerda J, Ursem R, Schuit C, Kerns M, van den Berg J, Vriezen W, Janssen A, Datema E, Jahrman T, Moquet F, Bonnet J, Peters S (2014) Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. Plant J 80(1):136–148

    Article  Google Scholar 

  • Theißen G, Melzer R, Rümpler F (2016) MADS-domain transcription factors and the floral quartet model of flower development: linking plant development and evolution. Development 143(18):3259–3271

    Article  PubMed  CAS  Google Scholar 

  • Thieulin-Pardo G, Avilan L, Kojadinovic M, Gontero B (2015) Fairy “tails”: flexibility and function of intrinsically disordered extensions in the photosynthetic world. Front Mol Biosci 2:23

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vandenbussche M, Theissen G, van de Peer Y, Gerats T (2003) Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations. Nucleic Acids Res 31(15):4401–4409

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang S, Lu G, Hou Z, Luo Z, Wang T, Li H, Zhang J, Ye Z (2014) Members of the tomato FRUITFULL MADS-box family regulate style abscission and fruit ripening. J Exp Bot 65(12):3005–3014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zuriaga E, Blanca J, Nuez F (2009) Classification and phylogenetic relationships in Solanum section Lycopersicon based on AFLP and two nuclear gene sequences. Genet Resour Crop Evol 56:663–678

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed using the experimental climate control facility in the Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences.

Funding

This work was financially supported by a grant from the Russian Science Foundation (no. 16-16-10022).

Author information

Authors and Affiliations

Authors

Contributions

EZK and PON conceived and designed the research. MAS conducted the experiments and performed gene cloning, phylogenetic reconstructions, variability analyses, and expression pattern determination. AVS contributed to in silico analyses. MAS, AVS, and EZK wrote the manuscript. All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to A. V. Shchennikova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Key message

Genomic sequences encoding orthologs of the FUL2 MADS-domain transcription factor were identified in 10 wild accessions of Solanum section Lycopersicon species. Analyses of FUL2 structure, phylogeny, and expression suggest conservation of its functional roles in tomato fruit development and ripening.

Electronic supplementary material

ESM 1

(XLS 2472 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slugina, M.A., Shchennikova, A.V., Pishnaya, O.N. et al. Assessment of the fruit-ripening-related FUL2 gene diversity in morphophysiologically contrasted cultivated and wild tomato species. Mol Breeding 38, 82 (2018). https://doi.org/10.1007/s11032-018-0842-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-018-0842-x

Keywords

Navigation