Molecular Breeding

, 38:53 | Cite as

Identification and mapping of net form of net blotch resistance in South African barley

  • Anke Martin
  • Gregory J. Platz
  • Daniel de Klerk
  • Ryan A. Fowler
  • Francois Smit
  • Francois G. Potgieter
  • Renée Prins
Article
  • 22 Downloads

Abstract

Net form of net blotch (NFNB) caused by the fungus Pyrenophora teres f. teres is an economically important foliar disease of barley (Hordeum vulgare) in southern and eastern Africa. Little attention has been given to disease resistance breeding, and knowledge about the presence of NFNB resistance in breeding lines is limited. Deploying resistance into varieties used in this region is important for future control of the disease. We have identified NFNB disease resistance in existing South African breeders’ lines and have mapped the resistance in line UVC8. Six different trials, three conducted in South Africa and another three in Australia, were used to identify resistance QTL. A major QTL was identified on chromosome 6H having a LOD score of 40.5 and 55% of the phenotypic variance explained. Kompetitive Allele Specific PCR (KASP™) markers were designed for this QTL region. These and microsatellite markers can now be used to routinely select for NFNB resistance.

Keywords

Hordeum vulgare Net form of net blotch Quantitative trait loci KASP™ markers 

Notes

Acknowledgments

We would like to thank the South African Winter Cereal Trust and the South African National Research Foundation for funding this project and Judy McIlroy, Janet Barsby, Lizaan Rademeyer, and Debbie Snyman for their technical support. We would also like to thank Dr. Kelvin Khoo for his help with the initial KAPS™ marker development.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interests.

Supplementary material

11032_2018_814_MOESM1_ESM.docx (13 kb)
Supplementary Table 1 SABBI lines and standards (last five listed lines) screened for adult NFNB resistance in 2008 in Australia. Lines in bold were also screened in 2009 in Australia and those underlined were screened in South Africa in 2011 and 2012. The pedigree of each line is given (DOCX 12 kb)
11032_2018_814_MOESM2_ESM.docx (12 kb)
Supplementary Table 2 Summary of linkage map of DH population UVC8/Erica. The number of markers located on each chromosome is indicated together with the linkage group sizes and the average distance between markers (DOCX 11 kb)
11032_2018_814_MOESM3_ESM.xlsx (582 kb)
Supplementary Table 3 Genotype data of UVC8/Erica population (XLSX 581 kb)
11032_2018_814_MOESM4_ESM.xlsx (8 kb)
Supplementary Table 4 List of SSR markers added to the UVC8/Erica genetic map (XLSX 8 kb)
11032_2018_814_MOESM5_ESM.docx (54 kb)
Supplementary Fig. 1 Distribution of infection response scores of the UVC8/Erica population across different environments and years. Parental scores are indicated (DOCX 54 kb)

References

  1. Abu-Qamar M, Liu ZH, Faris JD, Chao S, Edwards MC, Lai Z, Franckowiak JD, Friesen TL (2008) A region of barley chromosome 6H harbors multiple major genes associated with net blotch resistance. Theor Appl Genet 117:1261–1270CrossRefPubMedGoogle Scholar
  2. Akhavan A, Turkington TK, Kebede B, Xi KQ, Kumar K, Tekauz A, Kutcher HR, Tucker JR, Strelkov SE (2016) Genetic structure of Pyrenophora teres f. Teres and P-teres f. Maculata populations from western Canada. Eur J Plant Pathol 146:325–335CrossRefGoogle Scholar
  3. Bouajila A, Zoghlami N, Murad S, Baum M, Ghorbel A, Nazari K (2013) Genetic differentiation in Pyrenophora teres f. Teres populations from Syria and Tunisia as assessed by AFLP markers. Lett Appl Microbiol 56:389–400CrossRefPubMedGoogle Scholar
  4. Bovill J, Lehmensiek A, Platz GJ, Usher T, Franckowiak J, Mace E, Sutherland MW (2010) Mapping Bipolaris sorokiniana resistance genes in four barley populations. Mol Breed 26:653–666CrossRefGoogle Scholar
  5. Cakir M, Gupta S, Platz G, Ablett GA, Loughman R, Emebiri LC, Poulsen D, Li CD, Lance RCM, Galwey NW, Jones MGK, Appels R (2003) Mapping and validation of the genes for resistance to Pyrenophora teres F. teres in barley (Hordeum vulgare L.). Aust J Agric Res 54:1369–1377CrossRefGoogle Scholar
  6. Campbell GF, Crous PW, Lucas JA (1999) Pyrenophora teres f. Maculata, the cause of Pyrenophora leaf spot of barley in South Africa. Mycol Res 103:257–267CrossRefGoogle Scholar
  7. Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, Svensson JT, Wanamaker S, Bozdag S, Roose ML, Moscou MJ, Chao S, Varshney RK, Szuecs P, Sato K, Hayes PM, Matthews DE, Kleinhofs A, Muehlbauer GJ, DeYoung J, Marshall DF, Madishetty K, Fenton RD, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genomics 10:582CrossRefPubMedPubMedCentralGoogle Scholar
  8. Friesen TL, Faris JD, Lai Z, Steffenson BJ (2006) Identification and chromosomal location of major genes for resistance to Pyrenophora teres in a doubled-haploid barley population. Genome 49:855–859CrossRefPubMedGoogle Scholar
  9. Grewal TS, Rossnagel BG, Pozniak CJ, Scoles GJ (2008) Mapping quantitative trait loci associated with barley net blotch resistance. Theor Appl Genet 116:529–539CrossRefPubMedGoogle Scholar
  10. Gupta S, Li C, Loughman R, Cakir M, Westcott S, Lance R (2011) Identifying genetic complexity of 6H locus in barley conferring resistance to Pyrenophora teres f. Teres. Plant Breed 130:423–429CrossRefGoogle Scholar
  11. Konig J, Perovic D, Kopahnke D, Ordon F (2014) Mapping seedling resistance to net form of net blotch (Pyrenophora teres f. Teres) in barley using detached leaf assay. Plant Breed 133:356–365CrossRefGoogle Scholar
  12. Lehmensiek A, Platz J, Mace E, Poulsen D, Sutherland MW (2007) Mapping of adult plant resistance to net form of net blotch in three Australian barley populations. Aust J Agric Res 58:1191–1197CrossRefGoogle Scholar
  13. Lehmensiek A, Bester-van der Merwe AE, Sutherland MW, Platz G, Kriel WM, Potgieter GF, Prins R (2010) Population structure of south African and Australian Pyrenophora teres isolates. Plant Pathol 59:504–515CrossRefGoogle Scholar
  14. Leisova-Svobodova L, Minarikova V, Matusinsky P, Hudcovicova M, Ondreickova K, Gubis J (2014) Genetic structure of Pyrenophora teres net and spot populations as revealed by microsatellite analysis. Fungal Biol 118:180–192CrossRefPubMedGoogle Scholar
  15. Lightfoot DJ, Able AJ (2010) Growth of Pyrenophora teres in planta during barley net blotch disease. Australas Plant Pathol 39:499–507CrossRefGoogle Scholar
  16. Liu ZH, Ellwood SR, Oliver RP, Friesen TL (2011) Pyrenophora teres: profile of an increasingly damaging barley pathogen. Mol Plant Pathol 12:1–19CrossRefPubMedGoogle Scholar
  17. Louw JPJ, Victor D, Crous PW, Holz G, Janse BJH (1995) Characterization of Pyrenophora isolates associated with spot and net type lesions on barley in South-Africa. J Phytopathol Phytopathol Z 143:129–134CrossRefGoogle Scholar
  18. Manninen OM, Jalli M, Kalendar R, Schulman A, Afanasenko O, Robinson J (2006) Mapping of major spot-type and net-type netblotch resistance genes in the Ethiopian barley line cl 9819. Genome 49:1564–1571CrossRefPubMedGoogle Scholar
  19. Mascher M, Gundlach H, Himmelbach A, Beier S, Twardziok SO, Wicker T, Radchuk V, Dockter C, Hedley PE, Russell J, Bayer M, Ramsay L, Liu H, Haberer G, Zhang XQ, Zhang QS, Barrero RA, Li L, Taudien S, Groth M, Felder M, Hastie A, Simkova H, Stankova H, Vrana J, Chan S, Munoz-Amatrian M, Ounit R, Wanamaker S, Bolser D, Colmsee C, Schmutzer T, Aliyeva-Schnorr L, Grasso S, Tanskanen J, Chailyan A, Sampath D, Heavens D, Clissold L, Cao SJ, Chapman B, Dai F, Han Y, Li H, Li X, Lin CY, McCooke JK, Tan C, Wang PH, Wang SB, Yin SY, Zhou GF, Poland JA, Bellgard MI, Borisjuk L, Houben A, Dolezel J, Ayling S, Lonardi S, Kersey P, Lagridge P, Muehlbauer GJ, Clark MD, Caccamo M, Schulman AH, Mayer KFX, Platzer M, Close TJ, Scholz U, Hansson M, Zhang GP, Braumann I, Spannagl M, Li CD, Waugh R, Stein N (2017) A chromosome conformation capture ordered sequence of the barley genome. Nature 544(7651):426.  https://doi.org/10.1038/nature22043 CrossRefGoogle Scholar
  20. Mathre DE (1997) Compendium of barley disease, 2nd edn. American Phytopathological Society, St PaulGoogle Scholar
  21. McLean MS, Howlett BJ, Hollaway GJ (2009) Epidemiology and control of spot form of net blotch (Pyrenophora teres f. maculata) of barley: a review. Crop Pasture Sci 60:303–315CrossRefGoogle Scholar
  22. Murray GM, Brennan JP (2010) Estimating disease losses to the Australian barley industry. Australas Plant Pathol 39:85–96CrossRefGoogle Scholar
  23. Richards J, Chao SM, Friesen T, Brueggeman R (2016) Fine mapping of the barley chromosome 6H net form net blotch susceptibility locus. G3-genes genomes. Genetics 6:1809–1818Google Scholar
  24. Richards JK, Friesen TL, Brueggeman RS (2017) Association mapping utilizing diverse barley lines reveals net form net blotch seedling resistance/susceptibility loci. Theor Appl Genet 130:915–927CrossRefPubMedGoogle Scholar
  25. Saghai-Maroof M, Biyashev R, Yang G, Zhang Q, Allard R (1984) Extraordinary polymorphic microsatellite DNA in barley: species diversity, chromosomal locations and population dynamics. Proc Natl Acad Sci U S A 91:5466–5470CrossRefGoogle Scholar
  26. Semagn K, Babu R, Hearne S, Olsen M (2014) Single nucleotide polymorphism genotyping using Kompetitive allele specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed 33:1–14CrossRefGoogle Scholar
  27. Shjerve RA, Faris JD, Brueggeman RS, Yan C, Zhu Y, Koladia V, Friesen TL (2014) Evaluation of a Pyrenophora teres f. Teres mapping population reveals multiple independent interactions with a region of barley chromosome 6H. Fungal Genet Biol 70:104–112CrossRefPubMedGoogle Scholar
  28. Steffenson BJ, Hayes PM, Kleinhofs A (1996) Genetics of seedling and adult plant resistance to net blotch (Pyrenophora teres f. teres) and spot blotch (Cochliobolus sativus) in barley. Theor Appl Genet 92:552–558CrossRefPubMedGoogle Scholar
  29. Wang S, Basten CJ, Zeng Z-B (2007) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm
  30. Williams KJ, Platz GJ, Barr AR, Cheong J, Willsmore K, Cakir M, Wallwork H (2003) A comparison of the genetics of seedling and adult plant resistance to the spot form of net blotch (Pyrenophora teres F. Maculata). Aust J Agric Res 54:1387–1394CrossRefGoogle Scholar
  31. Wonneberger R, Ficke A, Lillemo M (2017) Identification of quantitative trait loci associated with resistance to net form net blotch in a collection of Nordic barley germplasm. Theor Appl Genet 130:2025–2043CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre for Crop HealthUniversity of Southern QueenslandToowoombaAustralia
  2. 2.Queensland Department of Agriculture and Fisheries, Hermitage Research FacilityWarwickAustralia
  3. 3.South African Barley Breeding InstituteCaledonSouth Africa
  4. 4.CenGen (Pty) LtdWorcesterSouth Africa
  5. 5.Department of Plant SciencesUniversity of the Free StateBloemfonteinSouth Africa

Personalised recommendations