Advertisement

Molecular Breeding

, 38:54 | Cite as

qNCLB7.02, a novel QTL for resistance to northern corn leaf blight in maize

  • Jianjun Wang
  • Zhennan Xu
  • Jing Yang
  • Xiaohuan Lu
  • Zhiqiang Zhou
  • Chaoshu Zhang
  • Lei Zheng
  • Ran Tian
  • Zhuanfang Hao
  • Hongjun Yong
  • Mingshun Li
  • Degui Zhang
  • Xinhai Li
  • Jianfeng Weng
Article
  • 258 Downloads

Abstract

Northern corn leaf blight (NCLB), which is caused by the hemibiotrophic fungal pathogen Setosphaeria turcica, is a devastating foliar disease that results in considerable maize yield losses. In the present study, quantitative trait locus (QTL) analysis was conducted across two environments using an ultra-high-density bin map constructed using recombinant inbred lines (RILs) derived from a cross between Ye478 and Qi319. A total of 11 QTLs, located on chromosomes 1, 4, 5, 6, 7, 8, 9, and 10, were detected that confer resistance to physiological race 0 of NCLB. Each QTL could explain 3.53–15.29% of the total phenotypic variation in disease resistance after artificial inoculation in two environments. Among these QTL, qNCLB7.02, which is located on chromosome 7, had the largest effect, accounting for 10.11 and 15.29% of the phenotypic variation in resistance in two field trials and BLUP. The common confidence interval (CI) for qNCLB7.02 was 1.4 Mb, according to the B73 RefGen_v3 sequence. The resistance effect of qNCLB7.02 was validated in 2016 by using chromosome segment substitution lines (CSSLs) derived from Qi319 as the donor in the genetic background of Ye478. The type 6 CSSL, which harbors introgressed qNCLB7.02, was found to be significantly associated with resistance to NCLB by linked marker bnlg1808 and exhibited greater resistance than the other CSSLs that did not carry this QTL (P = 0.0008). The combination of linkage mapping in RILs and validation in CSSLs is a powerful approach for the dissection of QTL for disease resistance in maize.

Keywords

Maize Northern corn leaf blight QTL (quantitative trait loci) Recombinant inbred line Chromosome segment substitution line 

Notes

Acknowledgments

This work was supported by a grant from the National Key Research and Development Program of China (2016YFD0101201) and the Chinese Academy of Agricultural Sciences (CAAS) Innovation Project.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11032_2017_770_MOESM1_ESM.doc (4.6 mb)
ESM 1 (DOC 4.56 mb).

References

  1. Alonso-Blanco C, Koornneef M (2000) Naturally occurring variation in Arabidopsis: an underexploited resource for plant genetics. Trends Plant Sci 5(1):22–29.  https://doi.org/10.1016/S1360-1385(99)01510-1 CrossRefPubMedGoogle Scholar
  2. Bentolila S, Guitton C, Bouvet N, Sailland A, Nykaza S, Freyssinet G (1991) Identification of an RFLP marker tightly linked to the Ht1 gene in maize. Theor Appl Genet 82:393–398CrossRefPubMedGoogle Scholar
  3. Carson ML (1995) A new gene in maize conferring the chlorotic halo reaction to infection by Exserohilum turcicum. Plant Dis 79(7):717–720.  https://doi.org/10.1094/PD-79-0717 CrossRefGoogle Scholar
  4. Chen ZL, Wang BB, Dong XM, Liu H, Ren LH, Chen J, Hauck A, Song W, Lai JS (2014) An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F2 maize population. BMC Genomics 15(1):433–443.  https://doi.org/10.1186/1471-2164-15-433 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Chen GS, Wang XM, Long SS, Jaqueth J, Li BL, Yan JB, Ding JQ (2016) Mapping of QTL conferring resistance to northern corn leaf blight using high-density SNPs in maize. Mol Breeding 36(1):4–13.  https://doi.org/10.1007/s11032-015-0421-3 CrossRefGoogle Scholar
  6. Chung CL, Jamann T, Longfellow J, Nelson R (2010) Characterization and fine-mapping of a resistance locus for northern leaf blight in maize bin 8.06. Theor Appl Genet 121(2):205–227.  https://doi.org/10.1007/s00122-010-1303-z CrossRefPubMedGoogle Scholar
  7. Ding JQ, Ali F, Chen GS, Li HH, Mahu G, Yang N, Narro L, Yan JB (2015) Genome-wide association mapping reveals novel sources of resistance to northern corn leaf blight in maize. BMC Plant Biol 15(1):206–217.  https://doi.org/10.1186/s12870-015-0589-z CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dingerdissen AL, Geiger HH, Lee M, Schechert A, Welz HG (1996) Interval mapping of genes for quantitative resistance of maize to Setosphaeria turcica, cause of northern leaf blight in a tropical environment. Mol Breeding 2(2):143–156.  https://doi.org/10.1007/BF00441429 CrossRefGoogle Scholar
  9. Doerge RW, Churchill GA (1996) Permutation tests for multiple loci affecting a quantitative character. Genetics 142:285–294Google Scholar
  10. Eshed Y, Zamir D (1994) A genomic library of Lycopersicon pennellii in L. esculentum: a tool for fine mapping of genes. Euphytica 79(3):175–179.  https://doi.org/10.1007/BF00022516 CrossRefGoogle Scholar
  11. Freymark PJ, Lee M, Martinson CA, Woodman WL (1994) Molecular-marker-facilitated investigation of host-plant response to Exserohilum turcicum in maize (Zea mays L.): components of resistance. Theor Appl Genet 88(3-4):305–313.  https://doi.org/10.1007/BF00223637 PubMedGoogle Scholar
  12. Gao JX, Shu X, Gao ZG, Zhuang JH, Zhang XF, Zhang S (2011) Identification and dynamic analysis of physiological races of Exserohilum turcicum in Northeastern China in 2009 (in Chinese). J Maize Sci 19(3):138–140Google Scholar
  13. Geiger HH, Heun M (1989) Genetics of quantitative resistance to fungal diseases. Annu Rev Phytopathol 27(1):317–341.  https://doi.org/10.1146/annurev.py.27.090189.001533 CrossRefGoogle Scholar
  14. Gevers HO (1975) A new major gene for resistance to Helminthosporium turcicum leaf blight of maize. Plant Dis Rep 59:296–299Google Scholar
  15. He ZM, Li WC, Wang XM (2011) Identification of Setosphaeria turcica races in Yunnan and Guizhou provinces (in Chinese). Plant Prot 37:112–115Google Scholar
  16. Hilu HM, Hooker AL (1963) Monogenic chlorotic-lesion resistance to Helminthosporium turcicum in corn seedlings. Phytopathology 53:909–914Google Scholar
  17. Holland JB (2007) Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10(2):156–161.  https://doi.org/10.1016/j.pbi.2007.01.003 CrossRefPubMedGoogle Scholar
  18. Hooker AL (1961) A new type of resistance in corn Helminthosporium turcicum. Plant Dis Rep 45:780–781Google Scholar
  19. Hooker AL. (1981) Citation classic-reaction of corn seedings with male-sterile cytoplasm to Helminthosporium-turcicum[J]. Current Contents/Agriculture Biology & Environmental Sciences. 52:18–18Google Scholar
  20. Hooker AL, Kim SK (1973) Monogenic and multigenic resistance to Helminthosporium turcicum in corn. Plant Dis Rep 57:586–589Google Scholar
  21. Hooker AL, Johnson PE, Shurtleff MC (1963) Soil fertility and northern cornleaf blight infection. Agron J 55(4):411–417.  https://doi.org/10.2134/agronj1963.00021962005500040039x CrossRefGoogle Scholar
  22. Hurni S, Scheuermann D, Krattinger SG, Kessel B, Wicker T, Herren G, Fitze MN, Breen J, Presterl T, Ouzunova M, Keller B (2015) The maize disease resistance gene Htn1 against northern corn leaf blight encodes a wall-associated receptor-like kinase. Proc Natl Acad Sci U S A 112:8781–8785CrossRefGoogle Scholar
  23. Knapp SJ, Stroup WW, Ross WM (1985) Exact confidence intervals for heritability on a progeny mean basis. Crop Sci 25(1):192–194.  https://doi.org/10.2135/cropsci1985.0011183X002500010046x CrossRefGoogle Scholar
  24. Li CH, Li YX, Bradbury PJ, Wu X, Shi YS, Song YC (2015) Construction of high-quality recombination maps with low-coverage genomic sequencing for joint linkage analysis in maize. BMC Biol 13(1):78–90.  https://doi.org/10.1186/s12915-015-0187-4 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Li F, Jia HT, Liu L, Zhang CX, Liu J, Zhang ZX (2014) Quantitative trait loci mapping for kernel row number using chromosome segment substitution lines in maize GENET MOL RES 13 (1):1707–1716Google Scholar
  26. Liu GS, Dong JG, Deng FY, Guo A, Zhang F, Zang MH (1996) Preliminary study of physiologic specialization and new nomenclature for Exserohilum turcicum of corn in China (in Chinese). Acta Phytophysiol Sin 26:305–310Google Scholar
  27. Mackay TF, Stone EA, Ayroles JF (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10(8):565–577.  https://doi.org/10.1038/nrg2612 CrossRefPubMedGoogle Scholar
  28. Madden LV, Hughes G, van den Bosch F (2007) The study of plant disease epidemics. APS press, St. Paul, MN, p432Google Scholar
  29. Marathi B, Jena KK (2015) Floral traits to enhance outcrossing for higher hybrid seed production in rice: present status and future prospects. Euphytica 201(1):1–14.  https://doi.org/10.1007/s10681-014-1251-9 CrossRefGoogle Scholar
  30. Ogliari JB, Guimaraes MA, Geraldi IO, Camargo LEA (2005) New resistance genes in the Zea mays L.-Exserohilum turcicum pathosystem. Genet Mol Biol 28(3):435–439.  https://doi.org/10.1590/S1415-47572005000300017 CrossRefGoogle Scholar
  31. Ogliari JB, Guirnaraes MA, Aranha Carnargo LE (2007) Chromosomal locations of the maize (Zea mays L.) HtP and rt genes that confer resistance to Exserohilum turcicum. Genet Mol Biol 30(3):630–634.  https://doi.org/10.1590/S1415-47572007000400021 CrossRefGoogle Scholar
  32. Parlevliet JE (2002) Durability of resistance against fungal, bacterial and viral pathogens: present situation. Euphytica 124(2):147–156.  https://doi.org/10.1023/A:1015601731446 CrossRefGoogle Scholar
  33. Perkins JM, Pedersen WL (1987) Disease development and yield losses associated with northern leaf blight on corn. Plant Dis 71(10):940–943.  https://doi.org/10.1094/PD-71-0940 CrossRefGoogle Scholar
  34. Poland JA, Bradbury PJ, Buckler ES, Nelson RJ (2011) Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci U S A 108(17):6893–6898.  https://doi.org/10.1073/pnas.1010894108 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Pratt RC, Gordon SG (2005) Breeding for resistance to maize foliar pathogens. Plant Breed Rev 119–173Google Scholar
  36. Raihan MS, Liu J, Huang J, Guo H, Pan QC, Yan JB (2016) Multi-environment QTL analysis of grain morphology traits and fine mapping of a kernel-width QTL in Zheng58 × SK maize population. Theor Appl Genet 129(8):1465–1477.  https://doi.org/10.1007/s00122-016-2717-z CrossRefPubMedGoogle Scholar
  37. Raymundo AD, Hooker AL, Perkins JM (1981) Effect of gene HtN on development corn leaf blight epidemics. Plant Dis 65(4):327–330.  https://doi.org/10.1094/PD-65-327 CrossRefGoogle Scholar
  38. Rish NJ (2000) Searching for genetic deteminants in the new millennum. Nature 405(6788):847–856.  https://doi.org/10.1038/35015718 CrossRefGoogle Scholar
  39. Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326(5956):1112–1115.  https://doi.org/10.1126/science.1178534 CrossRefPubMedGoogle Scholar
  40. Shim RA, Angeles ER, Ashikari M, Takashi T (2010) Development and evaluation of Oryza glaberrima Steud. Chromosome segment substitution lines (CSSLs) in the background of O. sativa L. cv. ‘Koshihikari’. Breed Sci 60(5):613–619.  https://doi.org/10.1270/jsbbs.60.613 CrossRefGoogle Scholar
  41. Simcox KD, Bennetzen JL (1993) The use of molecular markers to study Setosphaeria turcica resistance in maize. Phytopathology 83(12):1326–1330.  https://doi.org/10.1094/Phyto-83-1326 CrossRefGoogle Scholar
  42. Simcox KD, Jeflrey L, Bennetzen (1993) Mapping the HtN resistance gene to the long arm of chromosome 8. Maize Genet Coop Newsl 67:118–119Google Scholar
  43. Sun SQ, Wen LL, Gao DJ (2005) Identification of physiological races and mating type of Exserohilum turcicum (in Chinese). J Maize Sci 13:112–113Google Scholar
  44. Tefferi A, Hulluka M, Welz HG (1996) Assessment of damage and grain yield loss in maize caused by northern leaf blight in western Ethiopia. J Plant Dis Prot 103:353–363Google Scholar
  45. Tong SH, Chen G, Wang XJ, Wang ZY, Chen L, Yue H (2005) Resistance identification and evaluation of maize heterosis groups to the main disease in China. Rain Fed Crops 25:101–103Google Scholar
  46. Van SD (2001) SCAR markers for the Ht1, Ht2, Ht3 and HtN1 resistance genes in maize. Proceedings of the 43rd Annual Maize Genetics Conference, Lake Geneva, WI, 43:134-136Google Scholar
  47. Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530CrossRefPubMedGoogle Scholar
  48. Wang BT, Shen CT, Zhang JZ, Li XH, Xi ZY (2009) Study of a micro-PCR reaction system in maize. J Maize Sci 17(4):29–31 (in Chinese, English abstract)Google Scholar
  49. Wang ZQ, Yu CY, Liu X, Liu SJ, Yin CB, Liu LL, Lei JG, Jiang L, Yang C, Chen LM, Zhai HQ, Wan JM (2012) Identification of Indica rice chromosome segments for the improvement of Japonica inbreds and hybrids. Theor Appl Genet 124(7):1351–1364.  https://doi.org/10.1007/s00122-012-1792-z CrossRefPubMedGoogle Scholar
  50. Wang JK, Li HH, ZHang LY Z, and Meng L (2014) Genetic resources program international maize and wheat improvement center (CIMMYT) Apdo Postal 6-641Google Scholar
  51. Welz HG, Geiger HH (2000) Genes for resistance to northern corn leaf blight in diverse maize populations. Plant Breed 119:1–14Google Scholar
  52. Welz HG, Schechert AW (1999) Dynamic gene action at QTL for resistance to Setosphaeria turcica in maize. Theor Appl Genet 98(6-7):1036–1045.  https://doi.org/10.1007/s001220051165 CrossRefGoogle Scholar
  53. Wen W, Li K, Alseek S, Omranian N, Zhao L, Zhou Y, Xiao YJ, Jin M, Yang N, Liu HJ, Florian A, Li WQ, Pan CQ, Yan JB, Fernie AR (2015) Genetic determinants of the network of primary metabolism and their relationships to plant performance in a maize recombinant inbred line population. Plant Cell 27(7):1839–1856.  https://doi.org/10.1105/tpc.15.00208 CrossRefPubMedPubMedCentralGoogle Scholar
  54. Yang Q, Balint-Kurti P, Xu ML (2017) Quantitative disease resistance: dissection and adoption in maize. Mol Plant 10(3):402–413.  https://doi.org/10.1016/j.molp.2017.02.004 CrossRefPubMedGoogle Scholar
  55. Young ND, Tanksley SD (1989) Restriction fragment length polymorphism maps and the concept of graphical genotypes. Theor Appl Genet 77(1):95–101.  https://doi.org/10.1007/BF00292322 CrossRefPubMedGoogle Scholar
  56. Yu HY, Fu JF, Zhou RJ, Yan XR, Kang XJ (2011) Monitoring and causal analysis on epidemic of northern corn leaf blight in Liaoning Province (in Chinese). Hubei Agric Sci 0439-8114, 07-1375-02Google Scholar
  57. Yuan L, Ding D, Li WH, Xie HL, Tang JH, Fu ZY (2012) Construction of single segment substitution lines (SSSLs) of the elite inbred lines in maize (in Chinese). J Maize Sci 20:52–55Google Scholar
  58. Zaitlin D, Demars SJ, Gupta M (1992) Linkage of a second gene for NCLB resistance to molecular markers in maize. Maize Genet Coop Newsl 66:69–70Google Scholar
  59. Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136(4):1457–1468PubMedPubMedCentralGoogle Scholar
  60. Zhang XL (2013) Study on the resistance of maize to northern corn leaf blight and southern corn rust. Doctorate Chinese Academy of Agricultural SciencesGoogle Scholar
  61. Zhang H, Zhao Q, Sun ZZ, Zhang CQ, Feng Q, Tang SZ, Liang GH, Gu MH, Han B, Liu QQ (2011a) Development and high-throughput genotyping of substitution lines carrying the chromosome segments of indica 93-11 in the background of japonica Nipponbare. J Genet Genomics 38(12):603–611.  https://doi.org/10.1016/j.jgg.2011.11.004 CrossRefPubMedGoogle Scholar
  62. Zhang MH, Xu XD, Liu KJ, Dong HY, Jiang Y, Hu L (2011b) Physiological differentiation and races distribution of Exserohilum turcicum in China (in Chinese). J Maize Sci 19:138–141Google Scholar
  63. Zhang CS, Zhou ZQ, Yong HJ, Zhang XC, Hao ZF, Zhang FJ, Li MS, Zhang DG, Li XH, Wang ZH, Weng JF (2017) Analysis of the genetic architecture of maize ear and grain morphological traits by combined linkage and association mapping. Theor Appl Genet 130(5):1011–1029.  https://doi.org/10.1007/s00122-017-2867-7 CrossRefPubMedGoogle Scholar
  64. Zhao XR, Tan GQ, Xing Y, Wei L, Chao Q, Zuo WL, Lubberstedt T, Xu ML (2012) Marker-assisted introgression of qHSR1 to improve maize resistance to head smut. Mol Breeding 30(2):1077–1088.  https://doi.org/10.1007/s11032-011-9694-3 CrossRefGoogle Scholar
  65. Zheng ZP, Liu XH, Huang YB, Li Z, He C, Tan ZB (2007) QTL mapping for resistance to northern corn leaf blight in maize Southwest China Journal of Agricultural Sciences 04:634–637Google Scholar
  66. Zhu WY, Lin J, Yang DW, Zhao L, Zhang YD, Zhu Z, Chrn T, Wang CL (2009) Development of chromosome segment substitution lines derived from backcross between two sequenced rice cultivars, indica recipient93-11 and japonica donor nipponbare. Plant Mol Biol Rep 27(2):126–131.  https://doi.org/10.1007/s11105-008-0054-3 CrossRefGoogle Scholar
  67. Zhou ZQ ,Zhang CS, Zhou Y, Hao ZF, Wang ZH, Zeng X, Di H, Li MS, Zhang DG, Yong HJ, Zhang SH, Weng JF, Li XH (2016) Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines BMC Genomicsc 17:178Google Scholar
  68. Zuo WL, Chao Q, Zhang N, Ye JR, Tan GQ, Li BL, Xing YX, Zhang BQ, Liu HJ, Fengler KA, Zhao J, Zhao XR, Chen YS, Lai JS, Yan JB, Xu ML (2014) A maize wall-associated kinase confers quantitative resistance to head smut. Nat Genet 47(2):151–157.  https://doi.org/10.1038/ng.3170 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Jianjun Wang
    • 1
  • Zhennan Xu
    • 2
    • 3
  • Jing Yang
    • 2
  • Xiaohuan Lu
    • 2
  • Zhiqiang Zhou
    • 2
  • Chaoshu Zhang
    • 2
    • 3
  • Lei Zheng
    • 2
  • Ran Tian
    • 2
  • Zhuanfang Hao
    • 2
  • Hongjun Yong
    • 2
  • Mingshun Li
    • 2
  • Degui Zhang
    • 2
  • Xinhai Li
    • 2
  • Jianfeng Weng
    • 2
  1. 1.Institute of MaizeShanxi Academy of Agricultural SciencesXinzhouChina
  2. 2.Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
  3. 3.Heilongjiang ProvinceNortheast Agricultural UniversityHarbinChina

Personalised recommendations