Molecular Breeding

, 36:161 | Cite as

TaELF3-1DL, a homolog of ELF3, is associated with heading date in bread wheat

  • Jinping Wang
  • Weie Wen
  • Mamoona Hanif
  • Xianchun Xia
  • Honggang Wang
  • Shubing Liu
  • Jindong Liu
  • Li Yang
  • Shuanghe Cao
  • Zhonghu He


Early flowering 3 (ELF3) is a regulator to modulate photoperiod flowering in Arabidopsis. The homologs of ELF3 in rice and barley also have been identified essential for regulation of flowering time. In the current study, TaELF3 genes, homologs of ELF3 in bread wheat (Triticum aestivum L.), were cloned by a comparative genomics approach and located on homologous group 1 chromosomes, designated as TaELF3-1AL, TaELF3-1BL, and TaELF3-1DL, respectively. A sequence-tagged site (STS) marker was developed based on sequence polymorphism at the TaELF3-1DL locus. A quantitative trait locus (QTL) for heading date (HD) co-segregating with TaELF3-1DL explained 7.7–20.6% of the phenotypic variance in a RIL mapping population derived from the Gaocheng 8901/Zhoumai 16 cross genotyped using the wheat 90K iSelect assay. The late HD allele of TaELF3-1DL was prevalently selected in China’s specific wheat-growing regions and other countries. This study produces novel information in better understanding HD and provides a reliable functional marker for molecular marker-assisted selection in wheat breeding.


TaELF3-1DL SNP and STS marker QTL Heading date Triticum aestivum L. 



This work was supported by National Key Technology R&D Program of China (2014BAD01B05), National Natural Science Foundation of China (3151663, 31461143021), CAAS Science and Technology Innovation Program, and National Key Basic Research Program of China (2014Cb138105).

Supplementary material

11032_2016_585_MOESM1_ESM.tif (5.1 mb)
Fig. S1 Alignment of HvELF3, TaELF3–1AL, TaELF3–1BL and TaELF3–1DL (TIFF 5187 kb)
11032_2016_585_Fig4_ESM.gif (2.6 mb)

High Resolution Image (GIF 2633 kb)

11032_2016_585_MOESM2_ESM.tif (254 kb)
Fig. S2 Frequency distributions of HD in the Gaocheng 8901/Zhoumai 16 RIL population. a, Anyang 2013; b, Suixi 2013; c, Anyang 2014; d, Suixi 2014. HD of the parents, Gaocheng 8901 and Zhoumai 16, are indicated by arrows (TIFF 254 kb)
11032_2016_585_Fig5_ESM.gif (228 kb)

High Resolution Image (GIF 227 kb)

11032_2016_585_MOESM3_ESM.docx (28 kb)
Table S1 Genotypes of TaELF3–1DLa and TaELF3–1DLb in 283 Chinese and foreign wheat cultivars (DOCX 27 kb)
11032_2016_585_MOESM4_ESM.docx (13 kb)
Table S2 Characteristics of TaELF3–1AL, TaELF3–1BL and TaELF3–1DL (DOCX 13 kb)
11032_2016_585_MOESM5_ESM.docx (18 kb)
Table S3 Association analysis of TaELF3–1DL with HD of RILs developed from the Gaocheng 8901/Zhoumai 16 cross (DOCX 17 kb)
11032_2016_585_MOESM6_ESM.docx (17 kb)
Table S4 QTL analysis for HD in the Gaocheng 8901/Zhoumai 16 RIL population (DOCX 16 kb)


  1. Bagge M, Xia XC, Lübberstedt T (2007) Functional markers in wheat. Curr Opin Plant Biol 10:211–216CrossRefPubMedGoogle Scholar
  2. Barrett B, Bayram M, Kidwell K (2002) Identifying AFLP and microsatellite markers for vernalization response gene Vrn-B1 in hexaploid wheat (Triticum aestivum L.) using reciprocal mapping populations. Plant Breed 121:400–406CrossRefGoogle Scholar
  3. Beales J, Turner A, Griffiths S, Snape JW, Laurie DA (2007) A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet 115:721–733CrossRefPubMedGoogle Scholar
  4. Beniston M, Stephenson DB, Christensen OB, Ferro CAT, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Chang 81:71–95CrossRefGoogle Scholar
  5. Bennett D, Izanloo A, Edwards J, Kuchel H, Chalmers K, Tester M, Reynolds M, Schnurbusch T, Langridge P (2012) Identification of novel quantitative trait loci for days to ear emergence and flag leaf glaucousness in a bread wheat (Triticum aestivum L.) population adapted to southern Australian conditions. Theor Appl Genet 124:697–711CrossRefPubMedGoogle Scholar
  6. Boden SA, Weiss D, Ross JJ, Davies NW, Trevaskis B, Chandler PM, Swain SM (2014) EARLY FLOWERING3 regulates flowering in spring barley by mediating gibberellin production and FLOWERIN LOCUS T expression. Plant Cell 26:1557–1569CrossRefPubMedPubMedCentralGoogle Scholar
  7. Brenchley R, Spannagl M, Pfeifer M, Barker GL, D'Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M, Bancroft I, Gu Y, Huo N, Luo MC, Sehgal S, Gill B, Kianian S, Anderson O, Kersey P, Dvorak J, McCombie WR, Hall A, Mayer KF, Edwards KJ, Bevan MW, Hall N (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–710CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen F, Gao M, Zhang J, Zuo A, Shang X, Cui D (2013) Molecular characterization of vernalization response and photoperiod response genes in bread wheat from the yellow and Huai valley of China. BMC Plant Biol 13:199CrossRefPubMedPubMedCentralGoogle Scholar
  9. Covington MF, Panda S, Liu XL, Strayer CA, Wagner DR, Kay SA (2001) ELF3 modulates resetting of the circadian clock in Arabidopsis. Plant Cell 13:1305–1315CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dubcovsky J, Loukoianov A, Fu D, Valarik M, Sanchez A, Yan L (2006) Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2. Plant Mol Biol 60:469–480CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dunford RP, Griffiths S, Christodoulou V, Laurie DA (2005) Characterisation of a barley (Hordeum vulgare L.) homologue of the Arabidopsis flowering time regulator GIGANTEA. Theor Appl Genet 110:925–931CrossRefPubMedGoogle Scholar
  12. Faure S, Turner AS, Gruszka D, Christodoulou V, Davis SJ, von Korff M, Lauriea DA (2012) Mutation at the circadian clock gene EARLY MATURITY 8 adapts domesticated barley (Hordeum vulgare) to short growing seasons. Proc Natl Acad Sci U S A 109:8328–8333CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fu DL, Szucs P, Yan LL, Helguera M, Skinner JS, Zitzewitz J, Hayes PM, Dubcovsky J (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Gen Genomics 273:54–65CrossRefGoogle Scholar
  14. Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Alibert L, Orford S, Wingen L, Herry L, Faure S, Laurie D, Bilham L, Snape J (2009) Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theor Appl Genet 119:383–395CrossRefPubMedGoogle Scholar
  15. Hanocq E, Laperche A, Jaminon O, Lainé AL, Le Gouis J (2007) Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis. Theor Appl Genet 114:569–584CrossRefPubMedGoogle Scholar
  16. Hicks KA, Millar AJ, Carre IA, Somers DE, Straume M, Meeks-Wagner DR, Kay SA (1996) Conditional circadian dysfunction of the Arabidopsis early-flowering 3 mutant. Science 274:790–792CrossRefPubMedGoogle Scholar
  17. Iwaki K, Nishida J, Yanagisawa T, Yoshida H, Kato K (2002) Genetic analysis of Vrn-B1 for vernalization requirement by using linked dCAPS markers in bread wheat (Triticum aestivum L.). Theor Appl Genet 104:571–576CrossRefPubMedGoogle Scholar
  18. Kim WY, Hicks KA, Somers DE (2005) Independent roles for EARLY FLOWERING 3 and ZEITLUPE in the control of circadian timing, hypocotyl length, and flowering time. Plant Physiol 139:1557–1569CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kippes N, Debernardi JM, Vasquez-Gross HA, Akpinar BA, Budak H, Kato K, Chao S, Akhunov E, Dubcovsky J (2015) Identification of the VERNALIZATION 4 gene reveals the origin of spring growth habit in ancient wheats from South Asia. Proc Natl Acad Sci U S A 112:E5401–E5410CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kosambi DD (1943) The estimation of map distance from recombination values. Ann Eugenics 12:172–175CrossRefGoogle Scholar
  21. Lagudah ES, Appels R, McNeil D (1991) The Nor-D3 locus of Triticum tauschii: natural variation and genetic linkage to markers in chromosome 5. Genome 34:387–395CrossRefGoogle Scholar
  22. Le Gouis J, Bordes J, Ravel C, Heumez E, Faure S, Praud S, Galic N, Remoué C, Balfourier F, Allard V, Rousset M (2012) Genome-wide association analysis to identify chromosomal regions determining components of earliness in wheat. Theor Appl Genet 124:597–611CrossRefPubMedGoogle Scholar
  23. Li HH, Ye GY, Wang JK (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374CrossRefPubMedPubMedCentralGoogle Scholar
  24. Liu YN, He ZH, Appels R, Xia XC (2012) Functional markers in wheat: current status and future prospects. Theor Appl Genet 125:1–10CrossRefPubMedGoogle Scholar
  25. Matsubara K, Ogiso-Tanaka E, Hori K, Ebana K, Ando T, Yano M (2012) Natural variation in Hd17, a homolog of Arabidopsis ELF3 that is involved in rice photoperiodic flowering. Plant Cell Physiol 53:709–716CrossRefPubMedGoogle Scholar
  26. McWatters HG, Bastow RM, Hall A, Millar AJ (2000) The ELF3 zeitnehmer regulates light signaling to the circadian clock. Nature 408:716–720CrossRefPubMedGoogle Scholar
  27. Mühleisen J, Piepho HP, Maurer HP, Longin CFH, Reif JC (2013) Yield stability of hybrids versus lines in wheat, barley, and triticale. Theor Appl Genet 127:309–316CrossRefPubMedGoogle Scholar
  28. Nishida H, Yoshida T, Kawakami K, Fujita M, Long B, Akashi Y, Laurie DA, Kato K (2013) Structural variation in the 5′ upstream region of photoperiod-insensitive alleles Ppd-A1a and Ppd-B1a identified in hexaploid wheat (Triticum aestivum L.), and their effect on heading time. Mol Breed 31:27–37CrossRefGoogle Scholar
  29. Ravel C, Praud S, Murigeux A, Canaguier A, Sapet F, Dufour P, Chalhoub B, Brunel D, Beckert M, Charmet G (2006) Single nucleotide polymorphism frequency in a set of selected lines of bread wheat (Triticum aestivum L.). Genome 49:1131–1139CrossRefPubMedGoogle Scholar
  30. Reif JC, Maurer HP, Korzun V, Ebmeyer E, Miedaner T, Würschum T (2011) Mapping QTLs with main and epistatic effects underlying grain yield and heading time in soft winter wheat. Theor Appl Genet 123:283–292CrossRefPubMedGoogle Scholar
  31. Rousset M, Bonnin I, Remoue C, Falque M, Rhone B, Veyrieras JB, Madur D, Murigneux A, Balfourier F, Le Gouis J, Santoni S, Goldringer I (2011) Deciphering the genetics of flowering time by an association study on candidate genes in bread wheat (Triticum aestivum L.). Theor Appl Genet 123:907–926CrossRefPubMedGoogle Scholar
  32. Seki M, Chono M, Nishimura T, Sato M, Yoshimura Y, Matsunaka H, Fujita M, Oda S, Kubo K, Kiribuchi-Otobe C, Kojima H, Nishida H, Kato K (2013) Distribution of photoperiod-insensitive allele Ppd-A1a and its effect on heading time in Japanese wheat cultivars. Breed Sci 63:309–316CrossRefPubMedPubMedCentralGoogle Scholar
  33. Shitsukawa N, Iqari C, Shimada S, Kitagawa S, Sakamoto K, Saito H (2007) The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene. Genes Genet Syst 82:167–170CrossRefPubMedGoogle Scholar
  34. Snape W, Butterworth K, Whitechurch E, Worland AJ (2001) Waiting for fine times: genetics of flowering time in wheat. Euphytica 119:185–190CrossRefGoogle Scholar
  35. Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JoinMap. Plant J 3:739–744CrossRefGoogle Scholar
  36. Stelmakh AF (1998) Genetic systems regulating flowering response in wheat. Euphytica 100:359–369CrossRefGoogle Scholar
  37. Strasser B, Alvarez MJ, Califano A, Cerdan PD (2009) A complementary role for ELF3 and TFL1 in the regulation of flowering time by ambient temperature. Plant J 58:629–640CrossRefPubMedGoogle Scholar
  38. The International Wheat Genome Sequencing Consortium (IWGSC) (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788CrossRefGoogle Scholar
  39. Thines B, Harmon FG (2010) Ambient temperature response establishes ELF3 as a required component of the core Arabidopsis circadian clock. Proc Natl Acad Sci U S A 107:3257–3262CrossRefPubMedPubMedCentralGoogle Scholar
  40. Trevaskis B, Hemming MN, Dennis ES, Peacock WJ (2007) The molecular basis of vernalization-induced flowering in cereals. Trends Plant Sci 12:352–357CrossRefPubMedGoogle Scholar
  41. Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034CrossRefPubMedGoogle Scholar
  42. Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Heredity 93:77–78CrossRefGoogle Scholar
  43. Wei JX, Zhang Y, Liu JD, Zhang Y, Xia XC, Chen XM, He ZH (2015) Mapping quantitative trait loci for peroxidase activity and developing gene-specific markers for TaPod-A1 on wheat chromosome 3AL. Theor Appl Genet 128:2067–2076CrossRefPubMedGoogle Scholar
  44. Worland AJ (1996) The influence of flowering time genes on environmental adaptability in European wheats. Euphytica 89:49–57CrossRefGoogle Scholar
  45. Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci U S A 100:6263–6268CrossRefPubMedPubMedCentralGoogle Scholar
  46. Yan L, Helguera M, Kato K, Fukuyama S, Sherman J, Dubcovsky J (2004a) Allelic variation at the VRN-1 promoter region in polyploidy wheat. Theor Appl Genet 109:1677–1686CrossRefPubMedGoogle Scholar
  47. Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004b) The wheat VRN2 gene is a flowering repressor downregulated by vernalization. Science 303:1640–1644CrossRefPubMedPubMedCentralGoogle Scholar
  48. Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci U S A 103:19581–19586CrossRefPubMedPubMedCentralGoogle Scholar
  49. Yoshida R, Fekih R, Fujiwara S, Oda A, Miyata K, Tomozoe Y, Nakagawa M, Niinuma K, Hayashi K, Ezura H, Coupland G, Mizoguchi T (2009) Possible role of EARLY FLOWERING 3 (ELF3) in clock-dependent floral regulation by SHORT VEGETATIVE PHASE (SVP) in Arabidopsis thaliana. New Phytol 182:838–850CrossRefPubMedGoogle Scholar
  50. Zagotta MT, Hicks KA, Jacobs CI, Young JC, Hangarter RP, Wagner R (1996) The Arabidopsis ELF3 gene regulates vegetative photomorphogenesis and the photoperiodic induction of flowering. Plant J 10:691–702CrossRefPubMedGoogle Scholar
  51. Zakhrabekova S, Gough SP, Braumann I, Muller AH, Lundqvist J, Ahmann K, Dockter C, Matyszczak I, Kurowska M, Druka A, Waugh R, Graner A, Stein N, Steuernagel B, Lundqvist U, Hansson M (2012) Induced mutations in circadian clock regulator Mat-a facilitated short-season adaptation and range extension in cultivated barley. Proc Natl Acad Sci U S A 109:4326–4331CrossRefPubMedPubMedCentralGoogle Scholar
  52. Zhang J, Wang Y, Wu S, Yang J, Liu H, Zhou Y (2012) A single nucleotide polymorphism at the Vrn-D1 promoter region in common wheat is associated with vernalization response. Theor Appl Genet 125:1697–1704CrossRefPubMedGoogle Scholar
  53. Zhang X, Gao M, Wang S, Chen F, Cui D (2015) Allelic variation at the vernalization and photoperiod sensitivity loci in Chinese winter wheat cultivars (Triticum aestivum L.). Front. Plant Sci 6:470Google Scholar
  54. Zhao J, Huang X, Ouyang X, Chen W, Du A, Zhu L, Wang S, Deng XW, Li S (2012) OsELF3-1, an ortholog of Arabidopsis EARLY FLOWERING3, regulates rice circadian rhythm and photoperiodic flowering. PLoS One 7:e43705CrossRefPubMedPubMedCentralGoogle Scholar
  55. Zikhali M, Wingen LU, Griffiths S (2016) Delimitation of the Earliness per se D1 (Eps-D1) flowering gene to a subtelomeric chromosomal deletion in bread wheat (Triticum aestivum). J Exp Bot 67:287–299CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Jinping Wang
    • 1
    • 2
  • Weie Wen
    • 2
  • Mamoona Hanif
    • 2
  • Xianchun Xia
    • 2
  • Honggang Wang
    • 1
  • Shubing Liu
    • 1
  • Jindong Liu
    • 2
  • Li Yang
    • 2
  • Shuanghe Cao
    • 2
  • Zhonghu He
    • 2
    • 3
  1. 1.College of AgronomyShandong Agricultural UniversityTaianChina
  2. 2.Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS)BeijingChina
  3. 3.International Maize and Wheat Improvement Center (CIMMYT)BeijingChina

Personalised recommendations