Skip to main content
Log in

Genomic regions conferring resistance to multiple fungal pathogens in synthetic hexaploid wheat

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Fungal diseases are among the most devastating biotic stresses and often cause significant losses in wheat production worldwide. A set of 173 synthetic hexaploid wheat (SHW) characterized for resistance against fungal pathogens that cause leaf, stem and yellow rusts, yellow leaf spot, Septoria nodorum and crown rot were used in genome-wide association study (GWAS). Diversity Arrays Technology (DArT) and DArTSeq markers were employed for marker–trait association in which 74 markers associated with 35 quantitative trait loci (QTL) were found to be significantly linked with disease resistances using a unified mixed model (P = 10−3 to 10−5); Of these 15 QTL originated from D genome. Six markers on 1BL, 3BS, 4BL, 6B, and 6D conferred resistance to two diseases representing 10 of the 35 QTL. A further set of 147 SHW genotyped with DArT only markers validated 11 QTL detected in the previous 173 SHW. We also confirmed the presence of the gene Lr46/Yr29/Sr58/Pm39/Ltn2 on 1BL in the SHW germplasm. In addition, gene–gene interactions between significantly associated loci and all loci across the genome revealed five significant interactions at FDR <0.05. Two significant leaf rust and one stem rust interactions were thought to be synergistic, while another two QTL for yellow leaf spot involved antagonistic relations. To the best of our knowledge, this is the first GWAS for six fungal diseases using SHW. Identification of markers associated with disease resistance to one or more diseases represents an important resource for pyramiding favorable alleles and introducing multiple disease resistance from SHW accessions into current elite wheat cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

MDR:

Multiple disease resistance

SHW:

Synthetic hexaploid wheat

MLM:

Mixed linear model

QTL:

Quantitative trait loci

GWAS:

Genome-wide association study

LD:

Linkage disequilibrium

Lr:

Leaf rust

Sr:

Stem rust

Yr:

Yellow rust

YLS:

Yellow leaf spot

SNG:

Septoria Nodorum glume blotch

SNL:

Septoria Nodorum leaf blotch

Cr:

Crown rot

DArT:

Diversity Arrays Technology

References

  • Adhikari TB, Jackson EW, Gurung S, Hansen JM, Bonman JM (2011) Association mapping of quantitative resistance to Phaeosphaeria nodorum in spring wheat landraces from the USDA National Small Grains Collection. Phytopathology 101(11):1301–1310

    Article  PubMed  Google Scholar 

  • Ágnes SH, Szabolcs LK, Mónika V, László P, János P, Csaba L, Ákos M (2014) Differential influence of QTL linked to Fusarium head blight, Fusarium-damaged kernel, deoxynivalenol contents and associated morphological traits in a Frontana-derived wheat population. Euphytica 200(1):9–26

    Article  Google Scholar 

  • Aguilar V, Stamp P, Winzeler M, Winzeler H, Schachermayr G, Keller B et al (2005) Inheritance of field resistance to Stagonospora nodorum leaf and glume blotch and correlations with other morphological traits in hexaploid wheat (Triticum aestivum L.). Theor Appl Genet 111(2):325–336

    Article  CAS  PubMed  Google Scholar 

  • Alam KB, Gustafson JP (1988) Tan-spot resistance screening of Aegilops species. Plant Breeding 100:112–118

    Article  Google Scholar 

  • Appel JA, DeWolf E, Bockus WW, Todd T (Preliminary 2011) Kansas wheat disease loss estimates. Kansas cooperative plant disease survey report, August 18, 2011

  • Assefa S, Fehrmann H (2000) Resistance to wheat leaf rust in Aegilops tauschii Coss and inheritance of resistance in hexaploid wheat. Genet Resour Crop Evol 47:135–140

    Article  Google Scholar 

  • Bansal A (2014) Effects of the Lr34 and Lr46 rust-resistance genes on other diseases of wheat. PhD thesis, University of East Anglia

  • Basnet BR, Singh RP, Ibrahim AMH, Herrera-Foessel SA, Huerta-Espino J, Lan C, Rudd JC (2014) Characterization of Yr54 and other genes associated with adult plant resistance to yellow rust and leaf rust in common wheat Quaiu 3. Mol Breed 33(2):385–399

    Article  CAS  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300

    Google Scholar 

  • Benson JM, Poland JA, Benson BM, Stromberg EL, Nelson RJ (2015) Resistance to gray leaf spot of maize: genetic architecture and mechanisms elucidated through nested association mapping and near isogenic line analysis. PLoS Genet 11:e1005045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhavani S, Singh RP, Argillier O, Huerta-Espino J, Singh S, Njau P, Brun S, Lacam S, Desmouceaux N (2011) Mapping durable adult plant stem rust resistance to the race Ug99 group in six CIMMYT wheats. 2011 BGRI Technical Workshop, pp 43–53

  • Braun HJ, Atlin G, Payne T (2010) Multi-location testing as a tool to identify plant response to global climate change. In: Reynolds CRP (ed) Climate change and crop production. CABI, London

    Google Scholar 

  • Breseghello F, Sorrells MS (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown JKM, Rant JC (2013) Fitness costs and trade-offs of disease resistance and their consequences for breeding arable crops. Plant Pathol 62:83–95

    Article  Google Scholar 

  • Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M et al (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705

    Article  CAS  PubMed  Google Scholar 

  • Cesari S, Moore J, Chen C, Webb D, Periyannan S, Mago R, Bernoux M, Lagudah ES, Dodds PN (2016) Cytosolic activation of cell death and stem rust resistance by cereal MLA-family CC-NLR proteins. Proc Natl Acad Sci USA. doi:10.1073/pnas.1605483113

    PubMed  Google Scholar 

  • Chen J, Chu C, Souza EJ, Guttieri MJ, Chen X, Xu S et al (2012) Genome-wide identification of QTL conferring high-temperature adult-plant (HTAP) resistance to stripe rust (Puccinia striiformis f. sp. tritici) in wheat. Mol Breed 29(3):791–800

    Article  CAS  Google Scholar 

  • Cockram J, Scuderi A, Barber T, Furuki E, Gardner KA, Gosman N, Kowalczyk R, Phan HP, Rose GA, Tan KC, Oliver RP (2015) Fine-mapping the wheat Snn1 locus conferring sensitivity to the Parastagonospora nodorum necrotrophic effector SnTox1 using an eight founder multiparent advanced generation inter-Cross population. G3: genes| genomes|. Genetics 5(11):2257–2266

    Google Scholar 

  • Crossa J, Burgueño J, Dreisigacker S, Vargas M, Herrera-Foessel SA, Lillemo M, Singh RP, Trethowan R, Warburton M, Franco J, Reynolds M, Crouch JH, Ortiz R (2007) Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177:1889–1913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czembor PC, Arseniuk E, Czaplicki A, Song Q, Cregan PB, Ueng PP (2003) QTL mapping of partial resistance in winter wheat to Stagonospora nodorum blotch. Genome 46(4):546–554

    Article  CAS  PubMed  Google Scholar 

  • Dedryver F, Paillard S, Mallard S, Robert O, Trottet M, Nègre S, Verplancke G, Jahier J (2009) Characterization of genetic components involved in durable resistance to stripe rust in the bread wheat ‘Renan’. Phytopathology 99:968–973

    Article  CAS  PubMed  Google Scholar 

  • Detering F, Hunter E, Uszynski G, Wenzl P, Andrzej K (2010) A consensus genetic map of wheat: ordering 5000 wheat DArT markers. 20th ITMI & 2nd WGC workshop, 1–5 September, Beijing

  • Dreisigacker S, Kishii M, Lage J, Warburton M (2008) Use of synthetic hexaploid wheat to increase diversity for CIMMYT bread wheat improvement. Aust J Agric Res 59:413–420

    Article  Google Scholar 

  • Eastwood RF, Lagudah ES, Appels R, Hannah M, Kollmorgen JF (1991) Triticum tauschii: a novel source of resistance to cereal cyst nematode (Heterodera avenae). Aust J Agric Res 42:69–77

    Google Scholar 

  • Eberhard FS (2011) Molecular marker assisted selection for crown rot resistance in Triticum turgidum ssp. durum (Doctoral dissertation, University of Southern Queensland)

  • Faris JD, Friesen TL (2005) Identification of quantitative trait loci for race-nonspecific resistance to tan spot in wheat. Theor Appl Genet 111:386–392

    Article  CAS  PubMed  Google Scholar 

  • Farrer W (1898) The making and improvement of wheats for Australian conditions. Agric Gaz NSW 9:131–168

    Google Scholar 

  • Flemmig EL (2012) Molecular markers to deploy and characterize stem rust resistance in wheat. MS Thesis, N. C. State. Univ., Raleigh

  • Flint-Garcia SA, Thornsberry JM, Buckler ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    Article  CAS  PubMed  Google Scholar 

  • Flint-Garcia SA, Thuillet AC, Yu J, Pressoir G, Romero SM, Mitchell SE, Doebley J, Kresovich S, Goodman MM, Buckler ES (2005) Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant Journal 44:1054–1064

    Article  CAS  PubMed  Google Scholar 

  • Friesen TL, Faris JD (2004) Molecular mapping of resistance to Pyrenophora tritici-repentis race 5 and sensitivity to PtrToxB in wheat. Theor Appl Genet 109:464–471

    Article  CAS  PubMed  Google Scholar 

  • Genc Y, Oldach K, Gogel B, Wallwork H, McDonald GK, Smith AB (2013) Quantitative trait loci for agronomic and physiological traits for a bread wheat population grown in environments with a range of salinity levels. Mol Breed 32(1):39–59

    Article  Google Scholar 

  • Goldstein DB, Tate SK, Sisodiya SM (2003) Pharmacogenetics goes genomics. Nat Rev Genet 4:937–947

    Article  CAS  PubMed  Google Scholar 

  • Guerrero-Chavez R, Glover KD, Rouse MN, Gonzalez-Hernandez JL (2015) Mapping of two loci conferring resistance to wheat stem rust pathogen races TTKSK (Ug99) and TRTTF in the elite hard red spring wheat line SD4279. Mol Breed 35(1):1–10

    Article  CAS  Google Scholar 

  • Gupta SK, Charpe A, Prabhu KV, Haque QMR (2006) Identification and validation of molecular markers linked to the leaf rust resistance gene Lr19 in wheat. Theor Appl Genet 113(6):1027–1036

    Article  CAS  PubMed  Google Scholar 

  • Gurung S, Mamidi S, Bonman JM, Jackson EW, del Rio LE, Acevedo M, Mergoum M, Adhikari TB (2011) Identification of novel genomic regions associated with resistance to Pyrenophora tritici-repentis races 1 and 5 in spring wheat landraces using association analysis. Theor Appl Genet 123:1029–1041

    Article  CAS  PubMed  Google Scholar 

  • Gurung S, Mamidi S, Bonman JM, Xiong M, Brown-Guedira G, Adhikari TB (2014) Genome-wide association study reveals novel quantitative trait Loci associated with resistance to multiple leaf spot diseases of spring wheat. PLoS ONE 9(9):e108179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hatchett JH, Martin TJ, Livers RW (1981) Expression and inheritance of resistance to Hessian fly in synthetic hexaploid wheats derived from Triticum tauschii (Coss) Schmal. Crop Sci 21:731–734

    Article  Google Scholar 

  • Hedrick PW (1987) Gametic disequilibrium measures: proceed with caution. Genetics 117:331–374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera-Foessel SA, Singh RP, Huerta-Espino J, Salazar VC, Lagudah ES (2011) First report of slow rusting gene Lr46 in durum wheat. Borlaug Global Rust Initiative, June 13–16, 2011 Technical Workshop, St Paul, Minnesota, USA, p 191

  • Jansen C, Von Wettstein D, Schafer W, Kogel KH, Felk A, Maier FJ (2005) Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum. Proc Natl Acad Sci USA 102:16892–16897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jarosch B, Kogel KH, Schaffrath U (1999) The ambivalence of the barley Mlo locus: mutations conferring resistance against powdery mildew (Blumeria graminis f. sp. hordei) enhance susceptibility to the rice blast fungus Magnaporthe grisea. Mol Plant-Microbe Interact 12:508–514

    Article  CAS  Google Scholar 

  • Jighly A, Joukhadar R, Alagu M (2015a) SimpleMap: a pipeline to streamline high-density linkage map construction. Plant Genome. doi:10.3835/plantgenome2014.09.0056

  • Jighly A, Oyiga BC, Makdis F, Nazari K, Youssef O, Tadesse W, Abdalla O, Ogbonnaya FC (2015b) Genome-wide DArT and SNP scan for QTL associated with resistance to stripe rust (Puccinia striiformis f. sp. tritici) in elite ICARDA wheat (Triticum aestivum L.) germplasm. Theor Appl Genet 128:1277–1295

    Article  CAS  PubMed  Google Scholar 

  • Joukhadar R, El-Bouhssini M, Jighly A, Ogbonnaya FC (2013) Genomic regions associated with resistance to five major pests in wheat. Mol Breed 32:943–960

    Article  CAS  Google Scholar 

  • Jordan T, Seeholzer S, Schwizer S, Töller A, Somssich IE, Keller B (2011) The wheat Mla homologue TmMla1 exhibits an evolutionarily conserved function against powdery mildew in both wheat and barley. Plant J 65(4):610–621

    Article  CAS  PubMed  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W et al (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Kumar J, Huckelhoven R, Beckhove U, Nagarajan S, Kogel KH (2001) A compromised Mlo pathway affects the response of barley to the necrotrophic fungus Bipolaris sorokiniana (Teleomorph: Cochliobolus sativus) and its toxins. Phytopathology 91:127–133

    Article  CAS  PubMed  Google Scholar 

  • Kumar U, Joshi AK, Kumar S, Chand R, Röder MS (2010) Quantitative trait loci for resistance to spot blotch caused by Bipolaris sorokiniana in wheat (T. aestivum L.) lines ‘Ning 8201’and ‘Chirya 3’. Mol Breed 26(3):477–491

    Article  Google Scholar 

  • Lagudah ES (2011) Molecular genetics of race non-specific rust resistance in wheat. Euphytica 179:81–91

    Article  Google Scholar 

  • Lagudah ES, Krattinger SG, Herrera-Foessel S, Singh RP, Huerta-Espinoso J, Spielmeyer W, Brown-Guedira G, Selter LL, Keller B (2009) Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor Appl Genet 119:889–898

    Article  CAS  PubMed  Google Scholar 

  • Letta T, Maccaferri M, Badebo A, Ammar K, Ricci A, Crossa J, Tuberosa R (2013) Searching for novel sources of field resistance to Ug99 and Ethiopian stem rust races in durum wheat via association mapping. Theor Appl Genet 126(5):1237–1256

    Article  PubMed  Google Scholar 

  • Lipka AE, Tian F, Wang Q, Peiffer J, Li M, Bradbury PJ et al (2012) GAPIT: genome association and prediction integrated tool. Bioinformatics 28(18):2397–2399

    Article  CAS  PubMed  Google Scholar 

  • Loughman R, Lagudah ES, Trottet M, Wilson RE, Mathews A (2001) Septoria nodorum blotch resistance in Aegilops tauschii and its expression in synthetic amphiploids. Aust J Agric Res 52:1393–1402

    Article  Google Scholar 

  • Lowe I, Jankuloski L, Chao S, Chen X, See D, Dubcovsky J (2011) Mapping and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat. Theor Appl Genet 123(1):143–157

    Article  PubMed  PubMed Central  Google Scholar 

  • Lozano-Torres JL, Wilbers RHP, Gawronski P, Boshoven JC, Finkers-Tomczak A et al (2012) Dual disease resistance mediated by the immune receptor Cf-2 in tomato requires a common virulence target of a fungus and a nematode. Proc Natl Acad Sci USA 109:10119–10124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutz J, Hsam SLK, Limpert E, Zeller FJ (1994) Powdery mildew resistance in Aegilops tauschii Coss. and synthetic hexaploid wheats. Genet Resour Crop Evol 41:151–158

    Article  Google Scholar 

  • Ma H, Singh RP, Mujeeb-Kazi A (1995) Resistance to stripe rust in Triticum turgidum, T. tauschii and their synthetic hexaploids. Euphytica 82:117–124

    Article  Google Scholar 

  • Ma J, Li HB, Zhang CY, Yang XM, Liu YX, Yan GJ, Liu CJ (2010) Identification and validation of a major QTL conferring crown rot resistance in hexaploid wheat. Theor Appl Genet 120(6):1119–1128

    Article  CAS  PubMed  Google Scholar 

  • Maccaferri M, Sanguineti MC, Natoli E, Araus-Ortega JL, Bensalem M et al (2006) A panel of elite accessions of durum wheat (Triticum durum Desf.) suitable for association mapping studies. Plant Genet Resour 4:79–85

    Article  CAS  Google Scholar 

  • Mackay I, Powell W (2006) Methods for linkage disequilibrium mapping in crops. Trends Plant Sci 12:57–63

    Article  CAS  Google Scholar 

  • Mago R, Brown-Guedira G, Dreisigacker S, Breen J, Jin Y, Singh R, Appels R, Lagudah ES, Ellis J, Spielmeyer W (2011) An accurate DNA marker assay for stem rust resistance gene Sr2 in wheat. Theor Appl Genet 122:735–744. doi:10.1007/s00122-010-1482-7

    Article  CAS  PubMed  Google Scholar 

  • Mago R, Zhang P, Vautrin S, Šimková H, Bansal U, Luo MC, Rouse M, Karaoglu H, Periyannan S, Kolmer J, Jin Y (2015) The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus. Nat Plants 1(12):15186

    Article  CAS  PubMed  Google Scholar 

  • Marais GF, Potgieter GF, Roux HS (1994) An assessment of the variation for stem rust resistance in the progeny of a cross involving the Triticum species aestivum, turgidum and tauschii. S Afr J Plant Soil 11:15–19

    Article  Google Scholar 

  • McGrann GRD, Stavrinides A, Russell J, Corbitt MM, Booth A, Chartrain L, Tomas WTB, Brown JKM (2014) A tradeoff between mlo resistance to powdery mildew and increased susceptibility of barley to a newly important disease, Ramularia leaf spot. J Exp Bot 65(4):1025–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McIntosh RA (1992) Close genetic linkage of genes conferring adult-plant resistance to leaf rust and stripe rust in wheat. Plant Pathology 41:523–527 (Bot 65:1025–37)

    Article  Google Scholar 

  • Mebrate SA, Oerke EC, Dehne HW, Pillen K (2008) Mapping of the leaf rust resistance gene Lr38 on wheat chromosome arm 6DL using SSR markers. Euphytica 162(3):457–466

    Article  CAS  Google Scholar 

  • Michelmore RW, Christopoulou M, Caldwell KS (2013) Impacts of resistance gene genetics, function, and evolution on a durable future. Ann Rev Phytopathol 51:291–319

    Article  CAS  Google Scholar 

  • Moore JH, White BC (2007) Tuning relief for genome-wide genetic analysis. In: Marchiori E, Moore JH, Rajapakse JC (eds) Lecture notes in computer science, vol 4447. Springer, New York, pp 166–175

    Google Scholar 

  • Moore JW, Herrera-Foessel S, Lan C, Schnippenkoetter W, Ayliffe M, Huerta-Espino J, Lillemo M, Viccars L, Milne R, Periyannan S, Kong X (2015) A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nat Genet 47:1494–1498

    Article  CAS  PubMed  Google Scholar 

  • Mujeeb-Kazi A, Cano S, Rosas V, Cortes A, Delgado R (2001a) Registration of five synthetic hexaploid wheat and seven bread wheat lines resistant to wheat spot blotch. Crop Sci 41:1653–1654

    Article  Google Scholar 

  • Mujeeb-Kazi A, Delgado R, Juarez L, Cano S (2001b) Scab resistance (Type II: spread) in synthetic hexaploid germplasm. Ann Wheat Newsl 47:118–120

    Google Scholar 

  • Mulki MA, Jighly A, Ye G, Emebiri LC, Moody D, Ansari O, Ogbonnaya FC (2013) Association mapping for soilborne pathogen resistance in synthetic hexaploid wheat. Mol Breed 3:299–311

    Article  CAS  Google Scholar 

  • Neumann K, Kobiljski B, Denčić S, Varshney RK, Börner A (2011) Genome-wide association mapping: a case study in bread wheat (Triticum aestivum L.). Mol Breed 27:37–58

    Article  Google Scholar 

  • Nombela G, Williamson VM, Muniz M (2003) The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci. Mol Plant-Microbe Interact 16:645–649

    Article  CAS  PubMed  Google Scholar 

  • Ogbonnaya FC (2011) Development, management and utilization of synthetic hexaploid in wheat improvement. In: Bonjean AP, Angus WJ, van Ginkel M (eds) The world wheat book—a history of wheat breeding, vol 2. Lavoisier, Paris, pp 823–843

    Google Scholar 

  • Ogbonnaya FC, Seah S, Delibes A, Jahier J, Lopez-Brana I, Eastwood RF, Lagudah ES (2001) Molecular-genetic characterisation of a new nematode resistance gene in wheat. Theor Appl Genet 102:623–629

    Article  CAS  Google Scholar 

  • Ogbonnaya FC, Imtiaz M, Bariana HS, McLean M, Shankar M, Hollaway GJ, Trethowan R, Lagudah ES, van Ginkel M (2008) Mining synthetic hexaploids for multiple disease resistance to improve wheat. Aust J Agric Res 59:421–431

    Article  Google Scholar 

  • Ogbonnaya FC, Abdalla O, Mujeeb-Kazi A, Kazi AG, Steven Xu, Gosman N, Lagudah ES, Bonnett D, Sorells ME, Tsujimoto H (2013) Synthetic hexaploids: Harnessing species of primary gene pool for wheat improvement. Plant Breed Rev 37:35–122

    Google Scholar 

  • Oliver RP, Tucker M, Rybak K, Antoni E, Lichtenzveig J (2011) Managing fungicide resistance in broad acre cropping in Australia. Research update report in GRDC Australia. (http://www.grdc.com.au/director/events/researchupdates?item_id=C13F2CCD0DF0838ED195B4C05D522FD5&pageNumber=1)

  • Periyannan S, Moore J, Ayliffe M, Bansal U, Wang X, Huang L, Deal K, Luo M, Kong X, Bariana H, Mago R (2013) The gene Sr33, an ortholog of barley Mla genes, encodes resistance to wheat stem rust race Ug99. Science 341(6147):786–788

    Article  CAS  PubMed  Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2006) DARwin software. http://darwin.cirad.fr/

  • Poole GJ, Smiley RW, Paulitz TC, Walker CA, Carter AH, See DR, Garland-Campbell K (2012) Identification of quantitative trait loci (QTL) for resistance to Fusarium crown rot (Fusarium pseudograminearum) in multiple assay environments in the Pacific Northwestern US. Theor Appl Genet 125(1):91–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosewarne GM, Herrera-Foessel SA, Singh RP, Huerta-Espino J, Lan CX, He ZH (2013) Quantitative trait loci of stripe rust resistance in wheat. Theor Appl Genet 126(10):2427–2449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santra DK, Chen XM, Santra M, Campbell KG, Kidwell KK (2008) Identification and mapping QTL for high-temperature adult-plant resistance to stripe rust in winter wheat (Triticum aestivum L.) cultivar ‘Stephens’. Theor Appl Genet 117:793–802

    Article  CAS  PubMed  Google Scholar 

  • Schnurbusch T, Paillard S, Fossati D, Messmer M, Schachermayr G, Winzeler M, Keller B (2003) Detection of QTLs for Stagonospora glume blotch resistance in Swiss winter wheat. Theor Appl Genet 107(7):1226–1234

    Article  CAS  PubMed  Google Scholar 

  • Segrè D, DeLuna A, Church GM, Kishony R (2005) Modular epistasis in yeast metabolism. Nat Genet 37:77–83

    PubMed  Google Scholar 

  • Sehgal D, Vikram P, Sansaloni CP, Ortiz C, Saint Pierre C, Payne T et al (2015) Exploring and mobilizing the gene bank biodiversity for wheat improvement. PLoS ONE 10(7):e0132112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shankar M, Walker E, Golzar H, Loughman R, Wilson RE, Francki MG (2008) Quantitative trait loci for seedling and adult plant resistance to Stagonospora nodorum in wheat. Phytopathology 98(8):886–893

    Article  CAS  PubMed  Google Scholar 

  • Shirasu K, Schulze-Lefert P (2003) Complex formation, promiscuity and multi-functionality: protein interactions in disease-resistance pathways. Trends Plant Sci 8(6):252–258

    Article  CAS  PubMed  Google Scholar 

  • Siedler H, Obst A, Hsam SLK, Zeller FJ (1994) Evaluation for resistance to Pyrenophora tritici-repentis in Aegilops tauschii Coss. and synthetic hexaploid amphiploids. Genet Resour Crop Evol 41:27–34

    Article  Google Scholar 

  • Singh RP (1993) Genetic association of gene Bdv1 for tolerance to barley yellow dwarf virus with genes Lr34 and Yr18 for adult plant resistance to rusts in bread wheat. Plant Disease 77:1103–1106 (Genet 108(4):586–591)

    Article  Google Scholar 

  • Singh S, Franks CD, Huang L, Brown-Guedira GL, Marshall DS, Gill BS, Fritz A (2004) Lr41, Lr39, and a leaf rust resistance gene from Aegilops cylindrica may be allelic and are located on wheat chromosome 2DS. Theor Appl Genet 108:586–591

    Article  CAS  PubMed  Google Scholar 

  • Singh PK, Mergoum M, Ali S, Adhikari TB, Elias EM, Hughes GR (2006) Identification of new sources of resistance to tan spot, Stagonospora nodorum blotch, and Septoria tritici blotch of wheat. Crop Sci 46(5):2047–2053

    Article  Google Scholar 

  • Singh A, Pandey MP, Singh AK, Knox RE, Ammar K, Clarke JM, Clarke F, Singh RP, Pozniak CJ, DePauw RM, McCallum B, Cuthbert RD, Randhawa HS, Fetch T (2013) Identification and mapping of leaf, stem and stripe rust resistance QTL and their interactions in durum wheat. Mol Breed 31:405–418

    Article  CAS  PubMed  Google Scholar 

  • Solh M, Nazari K, Tadesse W, Wellings CR (2012) The growing threat of stripe rust worldwide. Paper presented at: Borlaug Global Rust Initiative (BGRI) conference, Beijing, China. 1–4 Sept 2012

  • Spielmeyer W, McIntosh RA, Kolmer J, Lagudah ES (2005) Powdery mildew resistance and Lr34/Yr18 genes for durable resistance to leaf and stripe rust co-segregate at a locus on the short arm of chromosome 7D of wheat. Theor Appl Genet 111:731–735

    Article  CAS  PubMed  Google Scholar 

  • Spielmeyer W, Singh RP, McFadden H, Wellings CR, Huerta-Espino J, Kong X, Appels R, Lagudah ES (2008) Fine scale genetic and physical mapping using interstitial deletion mutants of Lr34/Yr18: a disease resistance locus effective against multiple pathogens in wheat. Theor Appl Genet 116:481–490

    Article  CAS  PubMed  Google Scholar 

  • Sukhwinder-Singh Hernandez MV, Crossa J, Singh PK, Bains NS, Singh K, Sharma I (2012) Multi-trait and multi-environment QTL analysis for resistance to wheat diseases. PLoS ONE 7(6):e38008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Bai G, Carver BF, Bowden R (2010) Molecular mapping of wheat leaf rust resistance gene. Crop Sci 50(1):59–66

    Article  CAS  Google Scholar 

  • Tadesse W, Hsam SL, Wenzel G, Zeller FJ (2006) Identification and monosomic analysis of tan spot resistance genes in synthetic wheat lines (L. × Coss.). Crop Sci 46(3):1212–1217

    Article  Google Scholar 

  • Tadesse W, Hsam SLK, Zeller FJ (2007) Evaluation of common wheat cultivars for tan spot resistance and chromosomal location of a resistance gene in the cultivar ‘Salamouni’. Plant Breed 125:318–322

    Article  Google Scholar 

  • Tadesse W, Ogbonnaya FC, Jighly A, Nazari K, Rajaram S, Baum M (2014) Association mapping of resistance to yellow rust in winter wheat cultivars and elite genotypes. Crop Sci 54(2):607–616

    Article  Google Scholar 

  • Tadesse W, Ogbonnaya FC, Jighly A, Sanchez-Garcia M, Sohail Q, Rajaram S, Baum M (2015) Genome-wide association mapping of yield and grain quality traits in winter wheat genotypes. PLoS ONE 10(10):e0141339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JP (2008) Resistance to root-lesion nematodes (Pratylenchusthornei and P. neglectus) in synthetic hexpaloid wheats and their durum and Aegilops tauschii parents. Aust J Agric Res 59:432–446

    Article  Google Scholar 

  • Van Baarlen P, Staats M, Van Kan JAL (2004) Induction of programmed cell death in lily by the fungal pathogen Botrytis elliptica. Mol Plant Pathol 5:559–574

    Article  Google Scholar 

  • van Ginkel M, Ogbonnaya FC (2007) Novel genetic diversity from synthetic wheats in breeding cultivars for changing production conditions. Field Crops Res 104:86–94

    Article  Google Scholar 

  • Vanegas CDG, Garvin DF, Kolmer JA (2008) Genetics of stem rust resistance in the spring wheat cultivar Thatcher and the enhancement of stem rust resistance by Lr34. Euphytica 159:391–401. doi:10.1007/s10681-007-9541-0

    Article  CAS  Google Scholar 

  • Villareal RL, Mujeeb-Kazi A, Fuentes-Davila G, Rajaram S, Toro ED (1994) Resistance to karnal bunt (Tilletia indica Mitra) in synthetic hexaploid wheats derived from Triticum turgidum × T. tauschii. Plant Breed 112(1):63–69

    Article  Google Scholar 

  • Wallace JG, Bradbury PJ, Zhang N, Gibon Y, Stitt M, Buckler ES (2014) Association mapping across numerous traits reveals patterns of functional variation in maize. PLoS Genet 10:e1004845

    Article  PubMed  PubMed Central  Google Scholar 

  • Weir BS (1996) Genetic data analysis II: methods for discrete populations genetic data. Sinauer Associates, Sunderland

    Google Scholar 

  • White J, Law JR, Mackay I, Chalmers KJ, Smith JSC, Kilian A, Powell W (2008) The genetic diversity of UK, US and Australian cultivars of Triticum aestivum measured by DArT markers and considered by genome. Theor Appl Genet 116:439–453

    Article  CAS  PubMed  Google Scholar 

  • Wiesner-Hanks T, Nelson R (2016) Multiple disease resistance in plants. Annu Rev Phytopathol 54:8.1–8.24

    Article  CAS  Google Scholar 

  • William M, Singh RP, Huerta-Espino J, Islas SO, Hoisington D (2003) Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathology 93:153–159

    Article  CAS  PubMed  Google Scholar 

  • Wissera RJ, Kolkmanb JM, Patzoldta ME, Hollandc JB, Yud J, Krakowskyc M, Nelsonb RJ, Balint-Kurtie PJ (2011) Multivariate analysis of maize disease resistances suggests a pleiotropic genetic basis and implicates a GST gene. Proc Natl Acad Sci USA 108(18):7339–7344

    Article  Google Scholar 

  • Xu SS, Friesen TL, Mujeeb-Kazi A (2004) Seedling resistance to tan spot and stagonospora nodorum blotch in synthetic hexaploid wheats. Crop Sci 44:2238–2245

    Article  Google Scholar 

  • Yan W (2001) GGEBiplot—a Windows application for graphical analysis of multi-environment trial data and other types of two-way data. Agron J 93:1111–1118

    Article  Google Scholar 

  • Yan W, Kang MS (2002) Cultivar evaluation based on multiple traits. In: GGE biplot analysis: a graphical tool for breeders, geneticists, and agronomists. CRC Press, London

    Chapter  Google Scholar 

  • Yu J, Buckler ES (2006) Genetic association mapping and genome organization of maize. Curr Opin Biotechnol 17:155–160

    Article  CAS  PubMed  Google Scholar 

  • Yu LX, Lorenz A, Rutkoski J, Singh RP, Bhavani S, Huerta-Espino J, Sorrells ME (2011) Association mapping and gene-gene interaction for stem rust resistance in spring wheat germplasm. Theor Appl Genet 123:1257–1268

    Article  CAS  PubMed  Google Scholar 

  • Yu LX, Barbier H, Rouse MN, Singh S, Singh RP, Bhavani S et al (2014) A consensus map for Ug99 stem rust resistance loci in wheat. Theor Appl Genet 127(7):1561–1581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu G, Zhang Q, Friesen TL, Rouse MN, Jin Y, Zhong S et al (2015) Identification and mapping of Sr46 from Aegilops tauschii accession CIae 25 conferring resistance to race TTKSK (Ug99) of wheat stem rust pathogen. Theor Appl Genet 128(3):431–443

    Article  CAS  PubMed  Google Scholar 

  • Zegeye H, Rasheed A, Makdis F, Badebo A, Ogbonnaya FC (2014) Genome-wide association mapping for seedling and adult plant resistance to stripe rust in synthetic hexaploid wheat. PLoS ONE 9(8):e105593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu J, Arnett DK, Ordovas JM, Buckler ES (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42(4):355–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zwart RS, Thompson JP, Milgate AW, Bansal UK, Williamson PM, Raman H, Bariana HS (2010) QTL mapping of multiple foliar disease and root-lesion nematode resistances in wheat. Mol Breed 26:107–124

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the Grains Research and Development Corporation, International Centre for Agricultural Research in the Dry Areas (ICARDA), the International Maize and Wheat Improvement Centre (CIMMYT) and Department of Environment and Primary Industries, Victoria. They thank J. Wilson, M. S. McLean, S. P. Taylor, J. P. Thompson, H. S. Bariana, M. M. Shankar, and A. Milgate for their assistance with disease phenotyping.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis C. Ogbonnaya.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11032_2016_541_MOESM1_ESM.xlsx

Table S1 List of the 320 synthetic hexaploid wheat genotypes used in this study, their pedigrees and their phenotypes scored from 1 (susceptible) to 9 (resistant) (XLSX 34 kb)

Table S2 The number of mapped DArT and DArTSeq markers on each wheat chromosome (DOCX 13 kb)

Table S3 The full genotypic data for both main and validation sets (XLSX 7994 kb)

Table S4 Genotypes of the associated marker for the main set (XLSX 69 kb)

Table S5 QTL detected when analyzing the validation and the main panels as one set (DOCX 13 kb)

11032_2016_541_MOESM6_ESM.png

Figure S1 Results of the response of 320 SHWs to each of the six diseases evaluated. YLS = yellow leaf spot, Cr = crown rot, Lr = leaf rust, Sr = stem rust, Yr = yellow rust, SNL = Stagonospora nodorum leaf blotch, SNG = Stagonospora nodorum glume blotch. S = susceptible, MS = moderately susceptible, MR = moderately resistant, and R = resistant (PNG 2 kb)

Figure S2 Pseudo-heritability estimation inferred from the mixed model for the studied traits (PDF 58 kb)

Figure S3 Map position of both DArT (red) and DArTSeq (black) markers on wheat genome (PNG 8 kb)

11032_2016_541_MOESM9_ESM.png

Figure S4 Phylogenetic tree of the 320 SHWs, red genotypes represent the main set while blue genotypes represent the validation set (PNG 123 kb)

Figure S5 Kinship relations for the 320 SHWs (PNG 314 kb)

11032_2016_541_MOESM11_ESM.png

Figure S6 Scatter plot for the genetic distance against R2 value for each pair of markers on the same chromosome (LD decay) for a) whole genome; b) genome A; c) genome B; d) genome D. Red lines represent the LOESS second degree smoothing while the blue horizontal lines represents the R2 cut off 0.2 (PNG 199 kb)

Figure S7 Inter-chromosomal R2 values for each pair of markers for each genome (PNG 2 kb)

11032_2016_541_MOESM13_ESM.pdf

Figure S8 Manhattan and QQ plots for studied traits. Cr = crown rot, Lr = leaf rust, Sr = stem rust, Yr = yellow rust, SNL = Stagonospora nodorum leaf blotch, SNG = Stagonospora nodorum glume blotch and YLS = yellow leaf spot. Chromosomes were numbered starting from the homoeologous chromosome group one to seven with within group order of A, B and D genome, respectively. Chromosome 22 represents the unmapped markers (PDF 1379 kb)

11032_2016_541_MOESM14_ESM.png

Figure S9 The average disease score (the allelic effect) for the alleles of the markers with multiple associations. For the 6D QTL, we used only the marker 1126778 (PNG 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jighly, A., Alagu, M., Makdis, F. et al. Genomic regions conferring resistance to multiple fungal pathogens in synthetic hexaploid wheat. Mol Breeding 36, 127 (2016). https://doi.org/10.1007/s11032-016-0541-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-016-0541-4

Keywords

Navigation