Molecular Breeding

, 36:70 | Cite as

QTL mapping reveals genetic architectures of malting quality between Australian and Canadian malting barley (Hordeum vulgare L.)

  • Gaofeng Zhou
  • Joe Panozzo
  • Xiao-qi Zhang
  • Mehmet Cakir
  • Stefan Harasymow
  • Chengdao Li


Australia and Canada are major exporters of malting barley (Hordeum vulgare L.), with Baudin from Australia and AC Metcalfe from Canada being the benchmark varieties for premium malting quality in the past 10 years. We used the barley doubled haploid population derived from a cross of Baudin and AC Metcalfe to map quantitative trait loci (QTLs) for malting quality. The results revealed different genetic architectures controlling malting quality for the two cultivars. Sixteen QTLs were identified and located on chromosomes 1H, 2H, 5H and 7H. The Australian barley Baudin mainly contributed to the malting quality QTL traits of high diastatic power and high β-glucanase on chromosome 1H, while Canadian barley AC Metcalfe mainly contributed to the QTL traits of high hot water extract, high free amino nitrogen, high α-amylase and low malt yield in chromosome 5HL telomere region. This study demonstrated the potential to breed new barley varieties with superior malting quality by integrating genes from Australian and Canadian malting barley varieties. This paper also provides methods to anchor traditional molecular markers without sequence information, such as amplified fragment length polymorphism markers, into the physical map of barley cv. ‘Morex’.


QTL Malting quality Barley Hordeum vulgare L. 



This work was supported by funding from Grains Research and Development Corporation (GRDC) of Australia (DAW00233), Department of Agriculture and Food Western Australia, and Western Australian State Agricultural Biotechnology Centre (SABC).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11032_2016_492_MOESM1_ESM.doc (117 kb)
Supplementary material 1 (DOC 117 kb)


  1. Arends AM, Fox GP, Henry RJ, Marschke RJ, Symons MH (1995) Genetic and environmental variation in the diastatic power of Australian barley. J Cereal Sci 21(1):63–70CrossRefGoogle Scholar
  2. Barr AR, Karakousis A, Lance RCM, Logue SJ, Manning S, Chalmers KJ, Kretschmer JM, Boyd WJR, Collins HM, Roumeliotis S, Coventry SJ, Moody DB, Read BJ, Poulsen D, Li CD, Platz GJ, Inkerman PA, Panozzo JF, Cullis BR, Smith AB, Lim P, Langridge P (2003) Mapping and QTL analysis of the barley population Chebec × Harrington. Aust J Agric Res 54(11–12):1125–1130CrossRefGoogle Scholar
  3. Bezant J, Laurie D, Pratchett N, Chojecki J, Kearsey M (1997) Mapping QTL controlling yield and yield components in a spring barley (Hordeum vulgare L.) cross using marker regression. Mol Breed 3(1):29–38CrossRefGoogle Scholar
  4. Cakir M, Poulsen D, Galwey NW, Ablett GA, Chalmers KJ, Platz GJ, Park RF, Lance RCM, Panozzo JF, Read BJ, Moody DB, Barr AR, Johnston P, Li CD, Boyd WJR, Grime CR, Appels R, Jones MGK, Langridge P (2003) Mapping and QTL analysis of the barley population Tallon × Kaputar. Aust J Agric Res 54(11–12):1155–1162CrossRefGoogle Scholar
  5. Castro AJ, Benitez A, Hayes PM, Viega L, Wright L (2010) Coincident qualitative trait loci effects for dormancy, water sensitivity and malting quality traits in the BCD47 × Baronesse barley mapping population. Crop Pasture Sci 61(9):691–699CrossRefGoogle Scholar
  6. Clark SE, Hayes PM, Henson CA (2005) Characterization of barley tissue-ubiquitous β-amylase2 and effects of the single nucleotide polymorphisms on the enzyme’s thermostability. Crop Sci 45(5):1868–1876CrossRefGoogle Scholar
  7. Close TJ, Bhat PR, Lonardi S, Wu YH, Rostoks N, Ramsay L, Druka A, Stein N, Svensson JT, Wanamaker S, Bozdag S, Roose ML, Moscou MJ, Chao SAM, Varshney RK, Szucs P, Sato K, Hayes PM, Matthews DE, Kleinhofs A, Muehlbauer GJ, DeYoung J, Marshall DF, Madishetty K, Fenton RD, Condamine P, Graner A, Waugh R (2009) Development and implementation of high-throughput SNP genotyping in barley. BMC Genom 10:582CrossRefGoogle Scholar
  8. Collins HM, Panozzo JF, Logue SJ, Jefferies SP, Barr AR (2003) Mapping and validation of chromosome regions associated with high malt extract in barley (Hordeum vulgare L.). Aust J Agric Res 54(11–12):1223–1240CrossRefGoogle Scholar
  9. Eagles HA, Bedggood AG, Panozzo JF, Martin PJ (1995) Cultivar and environmental-effects on malting quality in barley. Aust J Agric Res 46(5):831–844CrossRefGoogle Scholar
  10. Elia M, Swanston JS, Moralejo M, Casas A, Perez-Vendrell AM, Ciudad FJ, Thomas WTB, Smith PL, Ullrich SE, Molina-Cano JL (2010) A model of the genetic differences in malting quality between European and North American barley cultivars based on a QTL study of the cross Triumph × Morex. Plant Breed 129(3):280–290CrossRefGoogle Scholar
  11. Emebiri LC, Moody DB, Panozzo JF, Read BJ (2004) Mapping of QTL for malting quality attributes in barley based on a cross of parents with low grain protein concentration. Field Crop Res 87(2–3):195–205CrossRefGoogle Scholar
  12. European-Brewery-Convention (1998) ‘Analytica EBC’. Method 4.5. Congress Method. Fachverlag Hans Carl, NurnbergGoogle Scholar
  13. Foster AE, Perterson GA, Banasik OJ (1967) Heritability of factors affecting malting quality of barley, Hordeum vulgare L. Crop Sci 7:611–613CrossRefGoogle Scholar
  14. Fox G, Logue S, Harasymow S, Taylor H, Ratcliffe M, Roumeliotis S, Onley K, Tansing P, Ferguson R, Glennie-Holmes M, Inkerman A, Tarr A, Evans B, Panozzo J, Osman A, Smith A (1999) Standardisation of diastatic power method for barley breeding programs. In: Paper presented at the Proceedings of the Ninth Barley Technology Symposium, Melbourne, AustraliaGoogle Scholar
  15. Gutierrez L, Cuesta-Marcos A, Castro AJ, Zitzewitz JV, Schmitt M, Hayes PM (2011) Association mapping of malting quality quantitative trait loci in winter barley: positive signals from small germplasm arrays. Plant Genome 4(3):256–272CrossRefGoogle Scholar
  16. Han F, Ullrich SE, Kleinhofs A, Jones BL, Hayes PM, Wesenberg DM (1997) Fine structure mapping of the barley chromosome-1 centromere region containing malting-quality QTLs. Theor Appl Genet 95(5–6):903–910CrossRefGoogle Scholar
  17. Hayes PM, Liu BH, Knapp SJ, Chen F, Jones B, Blake T, Franckowiak J, Rasmusson D, Sorrells M, Ullrich SE, Wesenberg D, Kleinhofs A (1993) Quantitative trait locus effects and environmental interaction in a sample of North-American barley germ plasm. Theor Appl Genet 87(3):392–401CrossRefPubMedGoogle Scholar
  18. Igartua E, Edney M, Rossnagel BG, Spaner D, Legge WG, Scoles GJ, Eckstein PE, Penner GA, Tinker NA, Briggs KG, Falk DE, Mather DE (2000) Marker-based selection of QTL affecting grain and malt quality in two-row barley. Crop Sci 40(5):1426–1433CrossRefGoogle Scholar
  19. Igartua E, Hayes PM, Thomas WTB, Meyer R, Mather DE (2002) Genetic control of quantitative grain and malt quality traits in barley. J Crop Prod 5(1/2):131–164CrossRefGoogle Scholar
  20. Knox CAP, Sonthayanon B, Chandra GR, Muthukrishnan S (1987) Structure and organization of 2 divergent α-amylase genes from barley. Plant Mol Biol 9(1):3–17CrossRefPubMedGoogle Scholar
  21. Laido G, Barabaschi D, Tondelli A, Gianinetti A, Stanca AM, Nicosia OLD, Di Fonzo N, Francia E, Pecchioni N (2009) QTL alleles from a winter feed type can improve malting quality in barley. Plant Breed 128(6):598–605CrossRefGoogle Scholar
  22. Li C, Ni P, Francki M, Hunter A, Zhang Y, Schibeci D, Li H, Tarr A, Wang J, Cakir M, Yu J, Bellgard M, Lance R, Appels R (2004) Genes controlling seed dormancy and pre-harvest sprouting in a rice-wheat-barley comparison. Funct Integr Genom 4(2):84–93CrossRefGoogle Scholar
  23. Li J, Huang XQ, Heinrichs F, Ganal MW, Roder MS (2005) Analysis of QTLs for yield, yield components, and malting quality in a BC3-DH population of spring barley. Theor Appl Genet 110(2):356–363CrossRefPubMedGoogle Scholar
  24. Li C, Cakir M, Lance R (2010) Genetic improvement of malting quality through conventional breeding and marker-assisted selection. In: Zhang GP, Li CD (eds) Genetics and improvement of barley malt quality. Springer, Berlin Heidelberg, pp 260–292Google Scholar
  25. Marquez-Cedillo LA, Hayes PM, Jones BL, Kleinhofs A, Legge WG, Rossnagel BG, Sato K, Ullrich E, Wesenberg DM, Barley NA (2000) QTL analysis of malting quality in barley based on the doubled-haploid progeny of two elite North American varieties representing different germplasm groups. Theor Appl Genet 101(1–2):173–184CrossRefGoogle Scholar
  26. Mather DE, Tinker NA, LaBerge DE, Edney M, Jones BL, Rossnagel BG, Legge WG, Briggs KG, Irvine RB, Falk DE, Kasha KJ (1997) Regions of the genome that affect grain and malt quality in a North American two-row barley cross. Crop Sci 37(2):544–554CrossRefGoogle Scholar
  27. Matthies IE, Weise S, Roder MS (2009) Association of haplotype diversity in the α-amylase gene amy1 with malting quality parameters in barley. Mol Breed 23(1):139–152CrossRefGoogle Scholar
  28. Mayer KFX, Waugh R, Langridge P, Close TJ, Wise RP, Graner A, Matsumoto T, Sato K, Schulman A, Muehlbauer GJ, Stein N, Ariyadasa R, Schulte D, Poursarebani N, Zhou RN, Steuernagel B, Mascher M, Scholz U, Shi BJ, Langridge P, Madishetty K, Svensson JT, Bhat P, Moscou M, Resnik J, Close TJ, Muehlbauer GJ, Hedley P, Liu H, Morris J, Waugh R, Frenkel Z, Korol A, Berges H, Graner A, Stein N, Steuernagel B, Taudien S, Groth M, Felder M, Platzer M, Brown JWS, Schulman A, Platzer M, Fincher GB, Muehlbauer GJ, Sato K, Taudien S, Sampath D, Swarbreck D, Scalabrin S, Zuccolo A, Vendramin V, Morgante M, Mayer KFX, Schulman A, Conso IBGS (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491(7426):711–716PubMedGoogle Scholar
  29. Mccleary BV, Codd R (1989) Measurement of β-amylase in cereal flours and commercial enzyme preparations. J Cereal Sci 9(1):17–33CrossRefGoogle Scholar
  30. Mccleary BV, Sheehan H (1987) Measurement of cereal α-amylase: a new assay procedure. J Cereal Sci 6(3):237–251CrossRefGoogle Scholar
  31. Oziel A, Hayes PM, Chen FQ, Jones B (1996) Application of quantitative trait locus mapping to the development of winter-habit malting barley. Plant Breed 115(1):43–51CrossRefGoogle Scholar
  32. Pallotta MA, Asayama S, Reinheimer JM, Davies PA, Barr AR, Jefferies SP, Chalmers KJ, Lewis J, Collins HM, Roumeliotis S, Logue SJ, Coventry SJ, Lance RCM, Karakousis A, Lim P, Verbyla AP, Eckermann PJ (2003) Mapping and QTL analysis of the barley population Amagi Nijo × WI2585. Aust J Agric Res 54(11–12):1141–1144CrossRefGoogle Scholar
  33. Panozzo JF, Eckermann PJ, Mather DE, Moody DB, Black CK, Collins HM, Barr AR, Lim P, Cullis BR (2007) QTL analysis of malting quality traits in two barley populations. Aust J Agric Res 58(9):858–866CrossRefGoogle Scholar
  34. Potokina E, Druka A, Luo ZW, Wise R, Waugh R, Kearsey M (2008) Gene expression quantitative trait locus analysis of 16,000 barley genes reveals a complex pattern of genome-wide transcriptional regulation. Plant J 53(1):90–101CrossRefPubMedGoogle Scholar
  35. Ranford JC, Bryce JH, Morris PC (2002) PM19, a barley (Hordeum vulgare L.) gene encoding a putative plasma membrane protein, is expressed during embryo development and dormancy. J Exp Bot 53(366):147–148CrossRefPubMedGoogle Scholar
  36. Schmalenbach I, Pillen K (2009) Detection and verification of malting quality QTLs using wild barley introgression lines. Theor Appl Genet 118(8):1411–1427CrossRefPubMedPubMedCentralGoogle Scholar
  37. Shu K, Zhang HW, Wang SF, Chen ML, Wu YR, Tang SY, Liu CY, Feng YQ, Cao XF, Xie Q (2013) ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in Arabidopsis. PLoS Genet 9(6):e1003577CrossRefPubMedPubMedCentralGoogle Scholar
  38. Szucs P, Blake VC, Bhat PR, Chao SM, Close TJ, Cuesta-Marcos A, Muehlbauer GJ, Ramsay L, Waugh R, Hayes PM (2009) An integrated resource for barley linkage map and malting quality QTL alignment. Plant Genome 2(2):134–140CrossRefGoogle Scholar
  39. Thomas WTB, Powell W, Swanston JS, Ellis RP, Chalmers KJ, Barua UM, Jack P, Lea V, Forster BP, Waugh R, Smith DB (1996) Quantitative trait loci for germination and malting quality characters in a spring barley cross. Crop Sci 36(2):265–273CrossRefGoogle Scholar
  40. van Ooijen JH (2004) MapQTL 5 software for the mapping quantitative trait loci in experimental populations. Plant Research International, WageningenGoogle Scholar
  41. Varshney RK, Marcel TC, Ramsay L, Russell J, Roder MS, Stein N, Waugh R, Langridge P, Niks RE, Graner A (2007) A high density barley microsatellite consensus map with 775 SSR loci. Theor Appl Genet 114(6):1091–1103CrossRefPubMedGoogle Scholar
  42. Wenzl P, Li HB, Carling J, Zhou MX, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesna J, Cakir M, Poulsen D, Wang JP, Raman R, Smith KP, Muehlbauer GJ, Chalmers KJ, Kleinhofs A, Huttner E, Kilian A (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genom 7:206CrossRefGoogle Scholar
  43. Yang HA, Tao Y, Zheng ZQ, Zhang QS, Zhou GF, Sweetingham MW, Howieson JG, Li CD (2013) Draft genome sequence, and a sequence-defined genetic linkage map of the legume crop species Lupinus angustifolius L. PLoS ONE 8(5):e64799CrossRefPubMedPubMedCentralGoogle Scholar
  44. Yoshigi N, Okada Y, Sahara H, Koshino S (1994) PCR cloning and sequencing of the β-amylase cDNA from barley. J Biochem Tokyo 115(1):47–51PubMedGoogle Scholar
  45. Zhou T, Takashi I, Ryouichi K, Naohiko H, Makoto K, Takehiro H, Kazuhiro S (2012) Malting quality quantitative trait loci on a high-density map of Mikamo golden × Harrington cross in barley (Hordeum vulgare L.). Mol Breed 30(1):103–112CrossRefGoogle Scholar
  46. Zhou G, Zhang Q, X-q Zhang, Tan C, Li C (2015) Construction of high-density genetic map in barley through restriction-site associated DNA sequencing. PLoS ONE 10(7):e0133161CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Gaofeng Zhou
    • 1
    • 3
  • Joe Panozzo
    • 2
  • Xiao-qi Zhang
    • 1
  • Mehmet Cakir
    • 1
  • Stefan Harasymow
    • 3
    • 4
  • Chengdao Li
    • 1
    • 3
    • 4
  1. 1.Western Barley Genetics AllianceMurdoch UniversityMurdochAustralia
  2. 2.Department of Primary IndustryEconomic Development, Jobs, Transport and ResourcesHorshamAustralia
  3. 3.Western Barley Genetics AllianceDepartment of Agriculture & Food WASouth PerthAustralia
  4. 4.Australian Export Grains Innovation CentreSouth PerthAustralia

Personalised recommendations