Advertisement

Molecular Breeding

, 36:68 | Cite as

Genetic structure based on EST–SSR: a putative tool for fruit color selection in Japanese plum (Prunus salicina L.) breeding programs

  • M. González
  • E. Salazar
  • J. Castillo
  • P. Morales
  • I. Mura-Jornet
  • J. Maldonado
  • H. Silva
  • B. Carrasco
Article

Abstract

Prunus salicina is one of the most economically important stone fruits. However, there is scarce genetic information available, which makes it difficult to implement marker-assisted selection (MAS) in genetic improvement programs. Recently, next-generation sequencing has greatly enhanced breeding program strategies, generating information associated with the identification of expressed sequence tag–simple sequence repeats (EST–SSRs) and single-nucleotide polymorphisms (SNPs), two of the most used molecular markers in MAS. Few studies have focused on developing EST–SSR markers considering both gene expression levels of contrasting phenotypes and specific transcription factors of metabolic pathways. This study investigated the transcriptome profile of P. salicina in fruits with contrasting skin colors, obtaining 54,224 unique contigs. From this dataset, 44 EST–SSRs have been generated, considering gene expression levels of contrasting phenotypes and specific transcription factor from three metabolic pathways: citric acid, carbohydrate metabolism and flavonoid pathways. Three EST–SSR markers developed from the putative flavonoid pathway transcription factors PsMYB10, PsMYB1 and PsbHLH35 were selected to determine genetic structure in 29 cultivars. This structure was contrasted with the genetic structure generated using genomic SNPs obtained by genotyping-by-sequencing (GBS). The analysis using SNPs identified two groups, while the use of selected EST–SSRs identified three. In contrast to the structure given by the SNPs, the EST–SSRs grouped all the yellow cultivars in one cluster, which was composed mainly of cultivars of this color. The EST–SSRs developed in this study may be considered as candidate markers to be evaluated in MAS strategies in genetic improvement programs.

Keywords

R2R3MYB bHLH Genotyping-by-sequencing (GBS) Marker-assisted selection (MAS) 

Notes

Acknowledgments

This work was funded by the Comisión Nacional de Investigación Científica y Tecnológica, CONICYT. Scholarships Doctorado en Chile 2009 No. 21090118; Apoyo a la Tesis Doctoral 2011 No. 24110179; Tesis en la Industria 2013 No. 781211008 and FONDECYT/Regular No. 1120261. Consorcio Tecnológico de Industria Hortofruticula S.A. Fondo Instituto de Investigaciones Agropecuarias—Ministerio de Agricultura (INIA-MINAGRI) Project No. 501453-70.

Supplementary material

11032_2016_491_MOESM1_ESM.docx (48 kb)
Supplementary material 1 (DOCX 47 kb)

References

  1. Aharoni A, Ric de Vos CH, Wein M, Sun Z, Greco R, Kroon A, Mol JNM, O’Connell AP (2001) The strawberry FaMYB1 transcription factor suppresses anthocyanin and flavonol accumulation in transgenic tobacco. Plant J 28:319–332. doi: 10.1046/j.1365-313X.2001.01154.x CrossRefPubMedGoogle Scholar
  2. Arias RS, Ballard LL, Scheffler BE (2009) UPIC: perl scripts to determine the number of SSR markers to run. Bioinformation 3(8):352CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barra M, Salazar E, Sagredo B (2012) High-quality genome DNA extraction method for high-throughput genotyping analysis in populations of species with phenolic content such as Solanum tuberosum (L.) spp tuberosum or Zea mays (L.). Cienc Investig Agrar 39(3):593–601CrossRefGoogle Scholar
  4. Baudry A, Heim MA, Dubreucq B, Caboche M, Weisshaar B, Lepiniec L (2004) TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J 39(3):366–380CrossRefPubMedGoogle Scholar
  5. Bielenberg DG, Rauh B, Fan S, Gasic K, Abbott AG, Reighard GL, Okie WR, Wells CE (2015) Genotyping by Sequencing for SNP-Based Linkage Map Construction and QTL Analysis of Chilling Requirement and Bloom Date in Peach [Prunus persica (L.) Batsch]. PLoS One 10(10):e0139406. doi: 10.1371/journal.pone.0139406 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Blair MW, Hurtado N (2013) EST–SSR markers from five sequenced cDNA libraries of common bean (Phaseolus vulgaris L.) comparing three bioinformatic algorithms. Mol Ecol Resour 13(4):688–695CrossRefPubMedGoogle Scholar
  7. Bosamia TC, Mishra GP, Thankappan R, Dobaria JR (2015) Novel and stress relevant EST derived SSR markers developed and validated in peanut. PLoS One 10(6):e0129127. doi: 10.1371/journal.pone.0129127 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Carrasco B, Díaz C, Moya M, Gebauer M, García-González R (2012) Genetic characterization of Japanese plum cultivars (Prunus salicina) using SSR and ISSR molecular markers. Cienc Investig Agrar 39:533–543CrossRefGoogle Scholar
  9. Ceballos H, Kawuki RS, Gracen VE, Yencho GC, Hershey CH (2015) Conventional breeding, marker-assisted selection, genomic selection and inbreeding in clonally propagated crops: a case study for cassava. Theor Appl Genet 128(9):1647–1667CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chagné D, Carlisle CM, Blond C, Volz RK, Whitworth CJ, Oraguzie NC, Crowhurst RN, Allan AC, Espley RV, Hellens RP, Gardiner SE (2007) Mapping a candidate gene (MdMYB10) for red flesh and foliage colour in apple. BMC Genom 8(1):212. doi: 10.1186/1471-2164-8-212 CrossRefGoogle Scholar
  11. Chen H, Qiao L, Wang L, Wang S, Blair MW, Cheng X (2015) Assessment of genetic diversity and population structure of mung bean (Vigna radiata)germplasm using EST-based and genomic SSR markers. Gene 566(2):175–183CrossRefPubMedGoogle Scholar
  12. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676CrossRefPubMedGoogle Scholar
  13. Da Maia LC, Palmieri DA, De Souza VQ, Kopp MM, de Carvalho FIF, Costa de Oliveira A (2008) SSR Locator: tool for simple sequence repeat discovery integrated with primer design and PCR simulation. Int J Plant Genom. doi: 10.1155/2008/412696 Google Scholar
  14. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R (2011) The variant call format and VCFtools. Bioinformatics 27(15):2156–2158. doi: 10.1093/bioinformatics/btr330 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dillon NL, Innes DJ, Bally IS, Wright CL, Devitt LC, Dietzgen RG (2014) Expressed sequence tag-simple sequence repeat (EST–SSR) marker resources for diversity analysis of mango (Mangifera indica L). Diversity 6(1):72–87CrossRefGoogle Scholar
  16. Dirlewanger E, Cosson P, Tavaud M, Aranzana MJ, Poizat C, Zanetto A, Arús P, Laigret F (2002) Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor Appl Genet 105:127–138CrossRefPubMedGoogle Scholar
  17. Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6(5):e19379. doi: 10.1371/journal.pone.0019379 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Espley RV, Brendolise C, Chagné D, Kutty-Amma S, Green S, Volz R, Putterill J, Schouten HJ, Gardiner SE, Hellens RP, Allan AC (2009) Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. Plant Cell 21(1):168–183. doi: 10.1105/tpc.108.059329 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Fischer TC, Gosch C, Pfeiffer J, Halbwirth H, Halle C, Stich K, Forkmann G (2007) Flavonoid genes of pear (Pyrus communis). Trees 21(5):521–529CrossRefGoogle Scholar
  20. Frett TJ, Reighard GL, Okie WR, Gasic K (2014) Mapping quantitative trait loci associated with blush in peach [Prunus persica (L.) Batsch]. Tree Genet Genom 10(2):367–381CrossRefGoogle Scholar
  21. Gasic K, Han Y, Kertbundit S, Shulaev V, Lezzoni AF, Stover EW, Bell RL, Wisniewski ME, Korban SS (2009) Characteristics and transferability of new apple EST-derived SSRs to other Rosaceae species. Mol Breed 23(3):397–411CrossRefGoogle Scholar
  22. Gonzalez A, Mendenhall J, HuoY Lloyd A (2009) TTG1 complex MYBs, MYB5 and TT2, control outer seed coat differentiation. Dev Biol 325(2):412–421CrossRefPubMedGoogle Scholar
  23. Goulão L, Monte-Corvo L, Oliveira CM (2001) Phenetic characterization of plum cultivars by high multiplex ratio markers: amplified fragment length polymorphisms and inter-simple sequence repeats. J Am SocHortic sci 126(1):72–77Google Scholar
  24. Hartmann W, Neumüller M (2009) Plum Breeding. In: Jain SM, Priyadarshan PM (eds) Breeding plantation tree crops: temperate species. Springer, New York, pp 161–231CrossRefGoogle Scholar
  25. He J, Zhao X, Laroche A, Lu ZX, Liu H, Li Z (2014) Genotyping-by-sequencing (GBS): an ultimate marker-assisted selection (MAS) tool to accelerate plant breeding. Front Plant Sci. doi: 10.3389/fpls.2014.00484 PubMedPubMedCentralGoogle Scholar
  26. Huang D, Zhang Y, Jin M, Li H, Song Z, Wang Y, Chen J (2014) Characterization and high cross-species transferability of microsatellite markers from the floral transcriptome of Aspidistra saxicola (Asparagaceae). Mol Ecol Resour 14(3):569–577CrossRefPubMedGoogle Scholar
  27. Ishida T, Hattori S, Sano R, Inoue K, Shirano Y, Hayashi H, Shibata D, Sato S, Kato T, Tabata S, Okada K, Wada T (2007) Arabidopsis TRANSPARENT TESTA GLABRA2 is directly regulated by R2R3 MYB transcription factors and is involved in regulation of GLABRA2 transcription in epidermal differentiation. Plant Cell 19(8):2531–2543CrossRefPubMedPubMedCentralGoogle Scholar
  28. Izzah NK, Lee J, Jayakodi M, Perumal S, Jin M, Park BS, AhnK Yang TJ (2014) Transcriptome sequencing of two parental lines of cabbage (Brassica oleracea L. var. capitata L.) and construction of an EST-based genetic map. BMC Genom 15(1):149. doi: 10.1186/1471-2164-15-149 CrossRefGoogle Scholar
  29. Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24(11):1403–1405CrossRefPubMedGoogle Scholar
  30. Jombart T, Devillard S, Balloux F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet 11(1):94. doi: 10.1186/1471-2156-11-94 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Jung S, Abbott A, Jesudurai C, Tomkins J, Main D (2005) Frequency, type, distribution and annotation of simple sequence repeats in Rosaceae ESTs. Funct Integr Genom 5(3):136–143CrossRefGoogle Scholar
  32. Kadomura-Ishikawa Y, Miyawaki K, Takahashi A, Masuda T, Noji S (2015) Light and abscisic acid independently regulated FaMYB10 in Fragaria × ananassa fruit. Planta 241:953–965CrossRefPubMedGoogle Scholar
  33. Kal AJ, van Zonneveld AJ, Benes V, van den Berg M, Koerkamp MG, Albermann K, Strack N, Ruijter JM, Richter A, Dujon B, AnsorgeW Tabak HF (1999) Dynamics of Gene Expression Revealed by Comparison of Serial Analysis of Gene Expression Transcript Profiles from Yeast Grown on Two Different Carbon Sources. Mol Biol Cell 10(6):1859–1872CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kang YJ, Lee T, Lee J, Shim S, Jeong H, Satyawan D, Kim MY, Lee SH (2015) Translational genomics for plant breeding with the genome sequence explosion. Plant Biotechnol J. doi: 10.1111/pbi.12449 Google Scholar
  35. Kaur S, Panesar PS, Bera MB, Kaur V (2015) Simple sequence repeat markers in genetic divergence and marker-assisted selection of rice cultivars: a review. CRC CR Rev Food Sci 55(1):41–49CrossRefGoogle Scholar
  36. Kim C, Guo H, Kong W, Chandnani R, Shuang LS, Paterson AH (2016) Application of genotyping by sequencing technology to a variety of crop breeding programs. Plant Sci 242:14–22. doi: 10.1016/j.plantsci.2015.04.016 CrossRefPubMedGoogle Scholar
  37. Klabunde GHF, Dalbó MA, Nodari RO (2014) DNA fingerprinting of Japanese plum (Prunus salicina) cultivars based on microsatellite markers. Crop Breed Appl Biotechnol 14(3):139–145CrossRefGoogle Scholar
  38. Li YC, Korol AB, Fahima T, Nevo E (2004) Microsatellites within genes: structure, function, and evolution. Mol Biol Evol 21(6):991–1007CrossRefPubMedGoogle Scholar
  39. Lin-Wang K, Bolitho K, Grafton K, Kortstee A, Karunairetnam S, McGhie TK, Espley RV, Hellens RP, Allan AC (2010) An R2R3 MYB transcription factor associated with regulation of the anthocyanin biosynthetic pathway in Rosaceae. BMC Plant Biol 10:50. doi: 10.1186/1471-2229-10-50 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Matschiner M, Salzburger W (2009) TANDEM: integrating automated allele binning into genetics and genomics workflows. Bioinformatics 25:1982–1983CrossRefPubMedGoogle Scholar
  41. Medina-Puche L, Cumplido-Laso G, Amil-Ruiz F, Hoffmann T, Ring L, Rodríguez-Franco A, Caballero JL, Schwab W, Muñoz-Blanco J, Blanco-Portales R (2014) MYB10 plays a major role in the regulation of flavonoid/phenylpropanoid metabolism during ripening of Fragaria × ananassa fruits. J Exp Bot 65(2):401–417CrossRefPubMedGoogle Scholar
  42. Meisel L, Fonseca B, González S, Baeza-Yates R, Cambiazo V, Campos R, Gonzalez M, Orellana A, Retamales J, Silva H (2005) A rapid and efficient method for purifying high quality total RNA from peaches (Prunus persica) for functional genomics analyses. Biol Res 38:83–88CrossRefPubMedGoogle Scholar
  43. Mnejja M, Garcia-Mas J, Howad W, Badenes ML, Arús P (2004) Simple sequence repeat (SSR) markers of Japanese plum (Prunus salicina Lindl.) are highly polymorphic and transferable to peach and almond. Mol Ecol Notes 4(2):163–166CrossRefGoogle Scholar
  44. Nishitani C, Terakami S, Sawamura Y, Takada N, Yamamoto T (2009) Development of novel EST–SSR markers derived from Japanese pear (Pyrus pyrifolia). Breed Sci 59(4):391–400CrossRefGoogle Scholar
  45. Ortiz A, Renaud R, Calzada I, Ritter E (1997) Analysis of plum cultivars with RAPD markers. J HorticSci 72(1):1–10Google Scholar
  46. Poland JA, Brown PJ, Sorrells ME, Jannink JL (2012) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7(2):e32253. doi: 10.1371/journal.pone.0032253 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. The American Journal of Human Genetics 81(3):559–575. doi: 10.1086/519795 CrossRefPubMedGoogle Scholar
  48. Rahim MA, Busatto N, Trainotti L (2014) Regulation of anthocyanin biosynthesis in peach fruits. Planta 240(5):913–929CrossRefPubMedGoogle Scholar
  49. Raj A, Stephens M, Pritchard JK (2014) fastSTRUCTURE: variational inference of population structure in large SNP data sets. Genetics 197(2):573–589CrossRefPubMedPubMedCentralGoogle Scholar
  50. Ravaglia D, Espley RV, Henry-Kirk R, Andreotti C, Ziosi V, Hellens RP, Costa G, Allan AC (2013) Transcriptional regulation of flavonoid biosynthesis in nectarine (Prunus persica) by a set of R2R3 MYB transcription factors. BMC Plant Biol 13:68. doi: 10.1186/1471-2229-13-68 CrossRefPubMedPubMedCentralGoogle Scholar
  51. Rubio M, Rodríguez-Moreno L, Ballester AR, Moura MC, Bonghi C, Candresse T, Martínez-Gómez P (2015) Analysis of gene expression changes in peach leaves in response to Plum pox virus infection using RNA-Seq. Mol Plant Pathol 16(2):164–176CrossRefPubMedGoogle Scholar
  52. Russell JR, Hedley PE, Cardle L, Dancey S, Morris J, Booth A, Odee D, Mwaura L, Omondi W, Angaine P, Machua J, Muchugi A, Milne I, Dawson IK (2014) Tropitree: an NGS-based EST–SSR resource for 24 tropical tree species. PLoS One 9(7):e102502. doi: 10.1371/journal.pone.0102502 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Salvatierra A, Pimentel P, Moya-Leon MA, Caligari PDS, Herrera R (2010) Comparison of transcriptional profiles of flavonoid genes and anthocyanin contents during fruit development of two botanical forms of Fragaria chiloensis ssp. chiloensis. Phytochemistry 71(16):1839–1847CrossRefPubMedGoogle Scholar
  54. Salvatierra A, Pimentel P, Moya-León MA, Herrera R (2013) Increased accumulation of anthocyanins in Fragaria chiloensis fruits by transient suppression of FcMYB1 gene. Phytochemistry. 90:25–36CrossRefPubMedGoogle Scholar
  55. Saski CA, Bhattacharjee R, Scheffler BE, Asiedu R (2015) Genomic resources for water yam (Dioscorea alata L.): analyses of EST-sequences, de novo sequencing and GBS libraries. PLoS One 10(7):e0134031. doi: 10.1371/journal.pone.0134031 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234CrossRefPubMedGoogle Scholar
  57. Shimada T, Hayama H, Haji T, Yamaguchi M, Yoshida M (1999) Genetic diversity of plums characterized by random amplified polymorphic DNA (RAPD) analysis. Euphytica 109(3):143–147CrossRefGoogle Scholar
  58. Shin J, Park E, Choi G (2007) PIF3 regulates anthocyanin biosynthesis in an HY5 dependent manner with both factors directly binding anthocyanin biosynthetic gene promoters in Arabidopsis. Plant J 49(6):981–994CrossRefPubMedGoogle Scholar
  59. Simko I (2009) Development of EST–SSR markers for the study of population structure in lettuce (Lactuca sativa L.). J Hered 100(2):256–262. doi: 10.1093/jhered/esn072 CrossRefPubMedGoogle Scholar
  60. Sooriyapathirana SS, Khan A, Sebolt AM, Wang D, Bushakra JM, Lin-Wang K, Allan AC, Gardiner SE, Chagné D, Iezzoni AF (2010) QTL analysis and candidate gene mapping for skin and flesh color in sweet cherry fruit (Prunus avium L.). Tree Genet Genom 6(6):821–832CrossRefGoogle Scholar
  61. Stracke R, Favory JJ, Gruber H, Bartelniewoehner L, Bartels S, Binkert M, Funk M, Weisshaar B, Ulm R (2010) The Arabidopsis bZIP transcription factor HY5 regulates expression of the PFG1/MYB12 gene in response to light and ultraviolet-B radiation. Plant Cell Environ 33(1):88–103PubMedGoogle Scholar
  62. Takos AM, Jaffé FW, Jacob SR, Bogs J, Robinson SP, Walker AR (2006) Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol 142(3):1216–1232CrossRefPubMedPubMedCentralGoogle Scholar
  63. Trebbi D, Papazoglou EG, Saadaoui E, Vischi M, Baldini M, Stevanato P, Cettul E, Sanzone AP, Gualdi L, Fabbri A (2015) Assessment of genetic diversity in different accessions of Jatrophacurcas. Ind Crop Prod 75:35–39. doi: 10.1016/j.indcrop.2015.06.051 CrossRefGoogle Scholar
  64. Tuan PA, Bai S, Yaegaki H, Tamura T, Hihara S, Moriguchi T, Oda K (2015) The crucial role of PpMYB10. 1 in anthocyanin accumulation in peach and relationships between its allelic type and skin color phenotype. BMC Plant Biol 15:280. doi: 10.1186/s12870-015-0664-5 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Varshney RK, Thiel T, Stein N, Langridge P, Graner A (2002) In silico analysis on frequency and distribution of microsatellites in ESTs of some cereal species. Cell Mol Biol Lett 7:537–546PubMedGoogle Scholar
  66. Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoSBiol 12(6):e1001883. doi: 10.1371/journal.pbio.1001883 CrossRefGoogle Scholar
  67. Vieira EA, Nodari RO, Dantas ACDM, Ducroquet JPHJ, Dalbó M, Borges CV (2005) Genetic mapping of Japanese plum. Crop Breed Appl Biot 5(1):29–37CrossRefGoogle Scholar
  68. Vigouroux Y, Jaqueth JS, Matsuoka Y, Smith OS, Beavis WD, Smith JSC, Doebley J (2002) Rate and pattern of mutation at microsatellite loci in maize. Mol Biol Evol 19(8):1251–1260CrossRefPubMedGoogle Scholar
  69. Wei H, Chen X, Zong X, Shu H, Gao D, Liu Q (2015) Comparative transcriptome analysis of genes involved in anthocyanin biosynthesis in the red and yellow fruits of sweet cherry (Prunus avium L.). PLoS One 10(3):e0121164. doi: 10.1371/journal.pone.0121164 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Winkel-Shirley B (2001) Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126(2):485–493 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Wünsch A, Hormaza, JI (2002) Molecular characterisation of sweet cherry (Prunus avium L.) genotypes using peach [Prunus persica (L.) Batsch] SSR sequences. Heredity 89(1):56–63CrossRefPubMedGoogle Scholar
  72. Xu W, Dubos C, Lepiniec L (2015) Transcriptional control of flavonoid biosynthesis by MYB–bHLH–WDR complexes. Trends Plant Sci 20(3):176–185CrossRefPubMedGoogle Scholar
  73. Yi G, Lee JM, Lee S, Choi D, Kim BD (2006) Exploitation of pepper EST–SSRs and an SSR-based linkage map. Theor Appl Genet 114(1):113–130CrossRefPubMedGoogle Scholar
  74. Zhou H, Lin-Wang K, Wang H, Gu C, Dare AP, Espley RV, He H, Allan AC, Han Y (2015) Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors. Plant J 82:105–121CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • M. González
    • 1
  • E. Salazar
    • 2
  • J. Castillo
    • 2
  • P. Morales
    • 3
  • I. Mura-Jornet
    • 1
  • J. Maldonado
    • 4
  • H. Silva
    • 4
  • B. Carrasco
    • 1
  1. 1.Facultad de Agronomía e Ingeniería ForestalPontificia Universidad Católica de ChileMaculChile
  2. 2.Centro Regional de Investigación La PlatinaInstituto de Investigaciones AgropecuariasLa PintanaChile
  3. 3.Institut of Plant GeneticsGottfried Wilhelm Leibniz UniversitätHannoverGermany
  4. 4.Laboratorio de Genómica Funcional y Bioinformática, Departamento de Producción Agrícola, Facultad de Ciencias AgronómicasUniversidad de ChileLa PintanaChile

Personalised recommendations