Advertisement

Molecular Breeding

, 36:31 | Cite as

Revealing physiological and genetic properties of a dominant maize dwarf Dwarf11 (D11) by integrative analysis

  • Yijun Wang
  • Wenjie Lu
  • Yao Chen
  • Dexiang Deng
  • Haidong Ding
  • Yunlong Bian
  • Zhitong Yin
  • Ya Zhu
  • Jia Zhao
Article

Abstract

Plant height is an important agronomic trait involved in lodging resistance and harvest index. The identification and characterization of mutants that are defective in plant height have implications for trait improvement in breeding programs. Two dominant maize dwarf mutants D8 and D9 have been well-characterized. Here, we report the characterization of a dominant maize dwarf mutant Dwarf11 (D11). Dwarf stature of D11 was mainly attributed to the inhibition of longitudinal cell elongation. The levels of bioactive GA3 were significantly lower in D11. Contrarily, D8 mutant accumulates markedly higher levels of GA3. The expression of GA biosynthetic and catabolic genes was dramatically decreased in D11. Expression variations of d8 and d9 genes were not observed in D11 mutant. Moreover, genetic suppressors of D11 were identified in inbred line Chang 7-2. Integrated omics data indicated that D11 is a novel dominant maize dwarf. The ultimate D11 gene cloning and its regulatory network elucidation may strengthen our understanding of the genetic basis of plant architecture and provide cues for breeding of crops with plant height ideotypes.

Keywords

D11 Dominant dwarf Gibberellin Genetic modifier Maize (Zea mays L.) 

Notes

Acknowledgments

We thank Yong Zhou, Hao Zhang, Yun Gao, and Yanping Jing for their help in experiments. This work was supported by the National Natural Science Foundation of China (31201213 and 31571671), the Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Open Project Program of Shanghai Key Laboratory of Bio-Energy Crops, Shanghai University (201302).

Supplementary material

11032_2016_455_MOESM1_ESM.tif (2.2 mb)
Figure S1 Cytological features of transverse sections of the second internodes from wild-type (WT) and D11. (A, C) Fresh hand-cut section. (B, D) Scanning electron microscopy. Scale bars, 100 μm (TIFF 2293 kb)
11032_2016_455_MOESM2_ESM.doc (46 kb)
Table S1 Primers used in this study (DOC 46 kb)

References

  1. Cassani E, Bertolini E, Badone FC, Landoni M, Gavina D, Sirizzotti A, Pilu R (2009) Characterization of the first dominant dwarf maize mutant carrying a single amino acid insertion in the VHYNP domain of the dwarf8 gene. Mol Breed 24:375–385CrossRefGoogle Scholar
  2. Chen Y, Hou M, Liu L, Wu S, Shen Y, Ishiyama K, Kobayashi M, McCarty DR, Tan BC (2014) The maize DWARF1 encodes a gibberellin 3-oxidase and is dual localized to the nucleus and cytosol. Plant Physiol 166:2028–2039CrossRefPubMedPubMedCentralGoogle Scholar
  3. Fujioka S, Yamane H, Spray CR, Gaskin P, Macmillan J, Phinney BO, Takahashi N (1988a) Qualitative and quantitative analyses of gibberellins in vegetative shoots of normal, dwarf-1, dwarf-2, dwarf-3, and dwarf-5 seedlings of Zea mays L. Plant Physiol 88:1367–1372CrossRefPubMedPubMedCentralGoogle Scholar
  4. Fujioka S, Yamane H, Spray CR, Katsumi M, Phinney BO, Gaskin P, Macmillan J, Takahashi N (1988b) The dominant non-gibberellin-responding dwarf mutant (D8) of maize accumulates native gibberellins. Proc Natl Acad Sci USA 85:9031–9035CrossRefPubMedPubMedCentralGoogle Scholar
  5. Hedden P (2003) The genes of the Green Revolution. Trends Genet 19:5–9CrossRefPubMedGoogle Scholar
  6. Khush GS (2001) Green revolution: the way forward. Nat Rev Genet 2:815–822CrossRefPubMedGoogle Scholar
  7. Lawit SJ, Wych HM, Xu D, Kundu S, Tomes DT (2010) Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development. Plant Cell Physiol 51:1854–1868CrossRefPubMedGoogle Scholar
  8. Li QC, Li YX, Yang ZZ, Liu C, Liu ZZ, Li CH, Peng B, Zhang Y, Wang D, Tan WW, Sun BC, Shi YS, Song YC, Zhang ZM, Pan GT, Wang TY, Li Y (2013) QTL mapping for plant height and ear height by using multiple related RIL populations in maize. Acta Agron Sin 39:1521–1529CrossRefGoogle Scholar
  9. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  10. Lv H, Zheng J, Wang T, Fu J, Huai J, Min H, Zhang X, Tian B, Shi Y, Wang G (2014) The maize d2003, a novel allele of VP8, is required for maize internode elongation. Plant Mol Biol 84:243–257CrossRefPubMedGoogle Scholar
  11. Makarevitch I, Thompson A, Muehlbauer GJ, Springer NM (2012) Brd1 gene in maize encodes a brassinosteroid C-6 oxidase. PLoS ONE 7:e30798CrossRefPubMedPubMedCentralGoogle Scholar
  12. Middleton AM, Úbeda-Tomás S, Griffiths J, Holman T, Hedden P, Thomas SG, Phillips AL, Holdsworth MJ, Bennett MJ, King JR, Owen MR (2012) Mathematical modeling elucidates the role of transcriptional feedback in gibberellin signaling. Proc Natl Acad Sci USA 109:7571–7576CrossRefPubMedPubMedCentralGoogle Scholar
  13. Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS (2003) Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302:81–84CrossRefPubMedGoogle Scholar
  14. Peiffer JA, Romay MC, Gore MA, Flint-Garcia SA, Zhang Z, Millard MJ, Gardner CA, McMullen MD, Holland JB, Bradbury PJ, Buckler ES (2014) The genetic architecture of maize height. Genetics 196:1337–1356CrossRefPubMedPubMedCentralGoogle Scholar
  15. Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261CrossRefPubMedGoogle Scholar
  16. Pilu R, Cassani E, Villa D, Curiale S, Panzeri D, Cerino Badone F, Landoni M (2007) Isolation and characterization of a new mutant allele of brachytic 2 maize gene. Mol Breed 20:83–91CrossRefGoogle Scholar
  17. Salas Fernandez MG, Becraft PW, Yin Y, Lübberstedt T (2009) From dwarves to giants? Plant height manipulation for biomass yield. Trends Plant Sci 14:454–461CrossRefPubMedGoogle Scholar
  18. Song J, Guo B, Song F, Peng H, Yao Y, Zhang Y, Sun Q, Ni Z (2011) Genome-wide identification of gibberellins metabolic enzyme genes and expression profiling analysis during seed germination in maize. Gene 482:34–42CrossRefPubMedGoogle Scholar
  19. Teng F, Zhai L, Liu R, Bai W, Wang L, Huo D, Tao Y, Zheng Y, Zhang Z (2013) ZmGA3ox2, a candidate gene for a major QTL, qPH3.1, for plant height in maize. Plant J 73:405–416CrossRefPubMedGoogle Scholar
  20. Wang Y, Deng D (2014) Molecular basis and evolutionary pattern of GA-GID1-DELLA regulatory module. Mol Genet Genomics 289:1–9CrossRefPubMedGoogle Scholar
  21. Wang Y, Deng D, Ding H, Xu X, Zhang R, Wang S, Bian Y, Yin Z, Chen Y (2013) Gibberellin biosynthetic deficiency is responsible for maize dominant Dwarf11 (D11) mutant phenotype: physiological and transcriptomic evidence. PLoS ONE 8:e66466CrossRefPubMedPubMedCentralGoogle Scholar
  22. Weng J, Xie C, Hao Z, Wang J, Liu C, Li M, Zhang D, Bai L, Zhang S, Li X (2011) Genome-wide association study identifies candidate genes that affect plant height in Chinese elite maize (Zea mays L.) inbred lines. PLoS ONE 6:e29229CrossRefPubMedPubMedCentralGoogle Scholar
  23. Winkler RG, Helentjaris T (1995) The maize Dwarf3 gene encodes a cytochrome P450-mediated early step in gibberellin biosynthesis. Plant Cell 7:1307–1317CrossRefPubMedPubMedCentralGoogle Scholar
  24. Xing A, Gao Y, Ye L, Zhang W, Cai L, Ching A, Llaca V, Johnson B, Liu L, Yang X, Kang D, Yan J, Li J (2015) A rare SNP mutation in Brachytic2 moderately reduces plant height and increases yield potential in maize. J Exp Bot 66:3791–3802CrossRefPubMedPubMedCentralGoogle Scholar
  25. Xu YJ, Gu DJ, Zhang BB, Zhang H, Wang ZQ, Yang JC (2013) Hormone contents in kernels at different positions on an ear and their relationship with endosperm development and kernel filling in maize. Acta Agron Sin 39:1452–1461CrossRefGoogle Scholar
  26. Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251CrossRefPubMedGoogle Scholar
  27. Zhang S, Liu F, Liu B, Wang L, Dong S (2007) Discovery of a new dominant dwarf gene in maize and its preliminary study. J Maize Sci 15:15–18Google Scholar
  28. Zheng DB, Yang XH, Li JS, Yan JB, Zhang SL, He ZH, Huang YQ (2013) QTL identification for plant height and ear height based on SNP mapping in maize (Zea mays L.). Acta Agron Sin 39:549–556CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Yijun Wang
    • 1
    • 2
  • Wenjie Lu
    • 1
  • Yao Chen
    • 1
  • Dexiang Deng
    • 1
  • Haidong Ding
    • 3
  • Yunlong Bian
    • 1
  • Zhitong Yin
    • 1
  • Ya Zhu
    • 1
  • Jia Zhao
    • 1
  1. 1.Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of EducationYangzhou UniversityYangzhouChina
  2. 2.Shanghai Key Laboratory of Bio-Energy CropsShanghaiChina
  3. 3.College of Bioscience and BiotechnologyYangzhou UniversityYangzhouChina

Personalised recommendations